
Appendix D

Differential and Algebraic

Topology

As we saw briefly while discussing obstructions to G-structures, the cohomology is

the object that captures topological aspects of manifolds and bundles by isolating

“closed” objects that are defined modulo “exact” terms. Characteristic classes, such

as Stiefel-Whitney, Chern, and Pontryagin, are all particular elements of some of such

cohomology groups. The latter come in several different flavors. In this appendix we

will take a quick overview of (co)homology and homotopy, which connect to many

chapters in the second half of the volume.

In this note, we will be content with being illustrative instead of being compre-

hensive, and many of such illustrations would involve some of the simplest manifolds

one encounter, say Sn and even Rn, which nevertheless would teach much about the

machineries involved. We close with an overview of homotopy which also plays impor-

tant roles in studying non-perturbative saddles of the gauge theory path integrals.

Much of what follows are inspired by the classic text of Bott and Tu, Differential

Forms in Algebraic Topology, and meant to wet the appetite in favor of the more

complete treatment there.
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D.1 Differential Complexes

D.1.1 de Rham Cohomology

A differential complex ofM is a sequence of ∧kT ∗[M] and the usual exterior differ-

ential operator d,

d−→ Ωk−1[M]
d−→ Ωk[M]

d−→ Ωk+1[M]
d−→ (D.1.1)

where Ωk[M] is the space of differential k-forms on M, on which d acts naturally.

For each 0 ≤ k ≤ d, we may find a subsets of which are closed and exact, respectively,

Zk ≡ {w(k) ∈ Ωk[M] | dw(k) = 0} ,

Bk ≡ {dw(k−1) | w(k−1) ∈ Ωk−1[M]} (D.1.2)

The first is a kernel of d while the latter is image under d. The quotient between the

two,

Hk
dR(M) = Zk/Bk (D.1.3)

defines the de Rham cohomology.

For a trivial example, take k = 0, for which B(0) is empty while Z(0) is a set of

locally constant functions. As such,

H0
dR(M) = R# (D.1.4)

where # is the number of disconnected components ofM. We will assume connected

M, so

H0
dR(M) = R (D.1.5)

What about the other end, Hd? For d-dimensional manifold, d-forms are automat-

ically d-closed since higher differential forms do not exist. For a compact and con-

nected Md, we would have Hd
dR(M) = R as well, to be eventually justified by the

Poincaré duality below.
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For this, a useful notion is the pairing, between Hp
dR and Hd−p

dR such as

([w(p)], [w(d−p)]) 7−→
∫
M
w(p) ∧ w(d−p) ∈ R (D.1.6)

where w(p) is a closed p-form representative of [w(p)] ∈ Hp. The closed nature of the

cohomology representatives guarantee that the pairing is well-defined on the coho-

mology. For this, we need the orientability. If such a pairing is non-degenerate, this

would give an isomorphism between,

Hk
dR ≃ Hd−k

dR (D.1.7)

The pairing is an isomorphism for compacted and closed manifold, Md, and gen-

erally not for open manifolds like Rd, however. This isomorphism is a particular

manifestation of the so-called Poincaré duality.

For real de Rham cohomology on compact and closedM, a powerful fact allows

us to handle the cohomology effectively is the Hodge theory. Given an exterior

differential d and a metric onM, its Hermitian conjugate operator d† may be defined

via ∫
M
(V⌟ v(p+1)) ∧ dw(p) =

∫
M
(V⌟ d†v(p+1)) ∧ w(p) (D.1.8)

which should tell us immediately, modulo a sign, d† ≃ ∗d∗ with the Hodge star

operation ∗. Since d†d† = 0, d† defines its own complex, mapping Ωk[M] to Ωk−1[M].

The Hodge theory states that, for compact and closedM, Ωk[M] may be decomposed

into three parts, such that generally

w(k) = dω(k−1) + d†ω(k+1) + h(k) (D.1.9)

where h(k) is annihilated by dd†+ d†d, which is to say that h(k) is harmonic. Further-

more, the subspace spanned by h(k) of Ωk[M] is isomorphic to Hk
dR.

In fact V itself offers the isomorphism,

[h(p)] ∈ Hp 7−→ [V⌟h(n−p)] ∈ Hp (D.1.10)

since the harmonicity is preserved under this Hodge dual map. This last again implies

that Hk
dR and Hd−k

dR are isomorphic to each other for such a niceM, since harmonicity
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of h mean the harmonicity of ∗h = V⌟h and vice versa. For example, we find

H0
dR(R

n) = R , H0<q≤n
dR (Rn) = ∅ (D.1.11)

for the top cohomology as well, with its harmonic representative being the volume

form V , which maps to a constant function upon the map Hd
dR and Hd

dR by the Hodge

duality operation.

Some of simpler examples are n-sphere Sn

H0
dR(S

n) = R , H0<q<n
dR (Sn) = ∅ , Hn

dR(S
n) = R (D.1.12)

which we will encounter repeatedly below, and the complex projective sphere CPk =

Ck+1/C∗,

H2p
dR(CP

k) = R , 0 ≤ p ≤ k

H2p+1
dR (CPk) = ∅ , 0 ≤ p < k (D.1.13)

In particular, the harmonic representative of H2p
dR(CP

k) is ∧pw where w is the Kähler

2-form we referred to earlier while discussing reduced holonomies; U(k) for CPk.

A useful and universal fact about the cohomology is the Künneth formula

Hp(M×N ) = ⊕q+q′=pHq(M)⊗Hq′(N ) (D.1.14)

a trivial example of which is

Hp
dR(R

k ×Md) = Hp
dR(Md) p ≤ d

Hp
dR(R

k ×Md) = ∅ , otherwise (D.1.15)

The local form of the characteristic classes that enter the index formula are partic-

ular elements ofHd
dR(Md) = R. However, the integrated values are discrete, implying

that these actually belong to a more refined version of the cohomology whose ele-

ments are discretely valued. With compact and closedM, there are multiple versions

of cohomology, including the Čech cohomology to be discussed later, which can be

often mapped to one another. Often we construct the cohomology from these alter-

nate, more combinatorial definitions. In fact, these more algebraic and combinatoric

approach allow us to formulate other variants such as H∗(M;Z) and H∗(M;Zp) etc,
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which tends to carry information not accessible by the de Rham cohomology.

D.1.2 Compact de Rham Cohomology

However, life is more complicated. Our own spacetime is nowhere near compact or

closed, so in many situations we need to go beyond such basic and ideal setups.

The de Rham complex and the cohomology thereof still makes sense, but the above

pairing and the subsequent inner product, for example, do not even make sense unless

some restrictions are demanded on Ωk. IfM is an open manifold of infinite span but

contractible, for example, we would have

H0
dR(Md) = R , Hd

dR(Md) = ∅ (D.1.16)

with the latter different from the compact cases. Apart from whether this cohomology

is of any use for physics, we need to explore what other possibilities exist.

One such is to require the differential forms that enter the de Rham complex to

have compact support. That is, we start with Ωk
c [M] is the space of differential k-

forms onM that vanishes outside some compact subset ofM, and build the complex

d−→ Ωk−1
c [M]

d−→ Ωk
c [M]

d−→ Ωk+1
c [M]

d−→ (D.1.17)

The closed and exact subspaces Zk
c and Bk

c , and the compact de Rham cohomology

follow as

Hk
cdR(M) = Zk

c /B
k
c (D.1.18)

Unlike de Rham, we see that H0
cdR(M) is empty since the only closed functions are

constant functions, and the only constant function with compact support is zero.

Conversely, we have Hd
cdR nontrivial,

H0
cdR(Md) = ∅ , Hd

cdR(Md) = R (D.1.19)

exactly opposite of de Rham.

This is not a coincidence, but rather a consequence of the non-degenerate pairing,

([w(p)], [v(d−p)c ]) 7−→
∫
Md

w(p) ∧ v(d−p)c ∈ R (D.1.20)
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between Hp
dR and Hd−p

cdR . Since the latter are compactly supported, the pairing makes

sense unlike the ill-fated would-be pairings between de Rham cohomology of non-

compactMd. This gives

H0≤q<n
dR (Rn) = ∅ , Hn

cdR(R
n) = R (D.1.21)

for example.

The Künneth formula is equally applicable for the compact de Rham,

Hp
cdR(M×N ) = ⊕q+q′=pHq

cdR(M)⊗Hq′

cdR(N ) (D.1.22)

a trivial example of which is

Hp
cdR(R

k ×M) = ∅ , p < k

Hp
cdR(R

k ×M) = Hp−k
cdR (M) , otherwise (D.1.23)

D.1.3 L2 Cohomology and Some Cautionary Words

For physics applications that involve open space(-time) of infinite volume, however,

neither de Rham nor compact de Rham would be acceptable. Wavefunctions should

obey some boundary conditions but, for example, would not be generally required to

be compactly supported since the latter means that the wavefunction must vanish

identically beyond some closed subset.

More natural is the square-normalizability, physically at least, which we often

denote L2. It should be quite clear that the usual pairing can be defined on the L2

differential forms and the Poincaré duality works within the L2 cohomology, unlike

de Rham or compact de Rham. Unfortunately, the L2 cohomology seem much less

accessible, mathematically speaking.

Whether the L2 cohomology admit an analog of the Hodge theory, whereby the

cohomology counts L2 harmonic form, is another subtle issue. It is believed that this

is not true in general but a related object called “reduced L2 cohomology” counts

L2 harmonic forms. All of these go well beyond the limited mathematical scope of

this volume, unfortunately, we merely offer these cautionary words and alert readers

not to rely on the standard (co)homology statements too blindly when the question
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involves non-compact manifolds and is of physics origin. Perhaps most importantly,

there is a purported equivalence of the L2 cohomology to the so-called intersection

(co)homology which is a version of singular (co)homology that deals with spaces with

singularities.

On the positive side, in some simple cases such as when the asymptotic boundary

region reduces to a cylinder or a cone, a rough statements can be found in the

mathematics literature how the L2 cohomology can be inferred from other types of

cohomologies. A more precise phrasing relies on the relative cohomology to which

we will make a brief detour later in this section, but the main idea is that the L2

cohomology may be regarded as the common part of the above two types of de Rham

cohomologies. At least it should be clear that the intersection of the two would obey

the Poincaré duality, as the L2 condition would demand.

Finally, a less detailed count of such L2 “harmonic” sections can be sometimes

inferred from the Atiyah-Patodi-Singer index theorem which we have reviewed in the

main text. This is because, at least for asymptotically cylindrical boundaries, the

celebrated APS boundary condition actually equals the L2 condition.

D.2 Exact Sequences

One universal tool for computing cohomology, homology, and also homotopy to be

discussed in next section is various versions of exact sequences. An exact sequence

means a set of vector spaces and maps,

· · · −→ A
f−−→ B

g−→ C −→ · · · (D.2.1)

such that, for instance, the kernel of g equals the image of f . A short exact sequence

is

∅ −→ A
f−−→ B

g−→ C −→ ∅ (D.2.2)

which says, in addition, f is injective while g is surjective. This also means C = B/A.

Suppose that A, B, C are each a differential complex, say

· · · d−→ Ak−1 d−→ Ak
d−→ Ak+1 d−→ · · · (D.2.3)
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etc. If f and g construct short exact sequences

∅ −→ Ak
f−−→ Bk′ g−→ Ck′′ −→ ∅ (D.2.4)

level by level and also commute with d’s of each complexes, this induces a long exact

sequence,

· · · d#−−→ Hk(A)
f#−−→ Hk′(B)

g#−−→ Hk′′(C)
d#−−→ Hk+1(A)

f#−→ · · · (D.2.5)

where f# and g# are naturally induced from f and g. That is, given a representative

w(k) of [w(k)] ∈ Hk(A), for example, we have f#([w(k)]) = [f(w(k))] ∈ Hk′(B). Since

f and g commute with d, cohomology elements map to cohomology elements under

f# and g#.

How is d# constructed? Given a representative c(k
′′) ∈ Ck′′ of [c(k

′′)] ∈ Hk′′(C),

there should be b(k
′) ∈ Bk′ such that g(b(k

′)) = c(k
′′) since g is surjective. On the other

hand g(db(k
′)) = d(g(b(k

′))) = dc(k
′′) = 0; this means db(k

′) belongs to the Kernel of

g in Bk′+1, so that there must be a(k+1) ∈ Ak+1 such that f(a(k+1)) = db(k). Finally

f(da(k+1)) = d(f(a(k+1)) = ddb(k
′) = 0 means that, since f is injective, a(k+1) is closed

and thus represents an element [a(k+1)] of Hk+1(A). This diagram chasing induces

the map,

d# : [c(k
′′)] 7−→ [a(k+1)] (D.2.6)

One can demonstrate that the above induced long sequence is exact, through more

of the same types of gymnastics.

This long exact sequence often gives us means to construct the cohomology in-

ductively given partial information on cohomologies. The key point is that the long

exact sequences are often broken up into shorter chains, by middle entries that are

null, allowing us to deduce other non-vanishing items unambiguously. We will see

some simple examples of how this works below. We did not specify the type of the

complexes, so this kind of construction is universally applicable whenever one can

construct the short exact sequence of complexes.

This type of mechanism involving long exact sequences has many different man-

ifestations in differential topology. It is particularly powerful for bundles, manifolds

built from dividing by free isomorphism, filter complexes, etc. The same techniques
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also work fruitfully for homologies and homotopy, of which we will see examples later.

The full arsenal of this inductive techniques are clearly beyond the scope of this note.

As before, we refer readers to Bott and Tu for a more comprehensive treatment,

including the Čech cohomology and homotopy to be discussed below.

D.2.1 Mayer-Vietoris Sequence

The most basic form of the long exact sequence may be induced when a manifoldM
may be composed of two charts, such that we have a sequence of inclusions,

M = U ∪ Ũ ⇐ U + Ũ ⇐ U ∩ Ũ (D.2.7)

where + means a disjoint union. The inclusions are denoted as⇐ because it involves

two inclusions. The left one denotes in reality U ↪→M and Ũ ↪→M while the right

one is composed of U ∩ Ũ ↪→ U and U ∩ Ũ ↪→ Ũ . This in turn induces a short exact

sequence for the de Rham complex

∅ → Ωk(M)
restrictions−−−−−−→ Ωk(U)⊕ Ωk(Ũ) restrictions−−−−−−→

difference
Ωk(U ∩ Ũ) → ∅ (D.2.8)

where “”restrictions” is via the pull-back of the inclusion maps.

The second map onto Ωk(U∩Ũ) is constructed in two steps; first, restrict elements

of Ωk(U) and Ωk(Ũ) each into Ωk(U ∩ Ũ) and then take a difference. Clearly, the two

restrictions of an element of Ωk(M) onto Ωk(U) and Ωk(Ũ) would coincide upon a

further restriction onto Ωk(U ∩Ũ), so the image of the first map belongs to the kernel

of the second and vice versa, which shows that the sequence is exact. The long exact

sequence out of this short exact sequence

· · · → Hk
dR(M) → Hk

dR(U)⊕Hk
dR(Ũ) → Hk

dR(U ∩ Ũ) → Hk+1
dR (M) → · · ·(D.2.9)

is called the Mayer-Vietoris sequence.

720



de Rham of Sn

The simplest example that can illustrate this construction is found for de Rham

cohomology ofM = S1 for which we can take U and Ũ to be each a segments,

∅ → H0
dR(S

1) → H0
dR(U)⊕H0

dR(Ũ) → H0
dR(U ∩ Ũ)

→ H1
dR(S

1) → H1
dR(U)⊕H1

dR(Ũ) → H1
dR(U ∩ Ũ) → ∅ (D.2.10)

Here, since both U and Ũ are topologically R, we must have

∅ → H0
dR(S

1) → R⊕R → R⊕R → H1
dR(S

1) → ∅ (D.2.11)

Note how U ∩ Ũ a also a disjoint union of two copies of R, topologically speaking.

The middle map reduces H0
dR(U)⊕H0

dR(Ũ) to R ⊂ H0
dR(U ∩Ũ) = R⊕R since the

taking a difference of two constants on U and Ũ gives a common constant function

on the disjoint overlapping regions of U ∩ Ũ . As such we find

∅ → H0
dR(S

1) → R⊕R → R⊕R → H1
dR(S

1) → ∅ (D.2.12)

consistent with the general fact H0
dR(Md) = R = Hd

dR(Md) for closed and connected

Md.

Let us extend this for de Rham cohomology of Sn for n ≥ 2 with U and Ũ
both n-disk, or topologically Rn, and U ∩ Ũ = R × Sn−1. Taking a snapshot of the

Mayer-Vietoris sequence, let us take a look at the segment

Hk−1
dR (Rn)⊕2 → Hk−1

dR (R× Sn−1) → Hk
dR(S

n) → Hk
dR(R

n)⊕2 (D.2.13)

With 1 < k the two ends of this segment are null, which shows

Hk−1
dR (Sn−1) = Hk−1

dR (R× Sn−1) = Hk
dR(S

n) (D.2.14)

for 1 < k ≤ n where the first equality is due to the Künneth formula.

On the other hand, with k = 1, we find from

∅ → H0
dR(S

n) → H0
dR(R

n)⊕2 → H0
dR(R× Sn−1) → H1

dR(S
n) → ∅ (D.2.15)
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With H0
dR(S

n) = H0
dR(R

n) = H0
dR(R×Sn−1) = R, this forces H1

dR(S
n) = ∅ for n ≥ 2.

Next up is k = 2, for which, if n > 2,

H1
dR(R× Sn−1) = ∅ → H2

dR(S
n) → H2

dR(R
n)⊕2 = ∅ (D.2.16)

hence H2(Sn>2) = ∅. These results, combined with Hk−1
dR (Sn−1) = Hk

dR(S
n) above,

build up the claimed Sn cohomology (D.1.12) starting from those of S1 and Rn’s.

D.2.2 Mayer-Vietoris for Compact de Rham

How does this work for compact de Rham complexes? For the latter, the map (D.2.7)

induces an exact sequence of the opposite direction. That is, we find

∅ ← Ωk
c (M)

sum←−−− Ωk
c (U)⊕ Ωk

c (Ũ)
double←−−− Ωk

c (U ∩ Ũ) ← ∅ (D.2.17)

where one takes w(k) ∈ Ωk
c (U ∩ Ũ) and assign (w(k),−w(k)) ∈ Ωk

c (U)⊕ Ωk
c (Ũ), which

in turn sum to zero when mapped to Ωk
c (M). Clearly both maps are possible only

because w’s are compactly supported and thus can be extended upon embedding to

a bigger space trivially, with the same compact support.

This generates a different Mayer-Vietoris sequences where the maps are reversed

level by level.

· · · ← Hk+1
cdR (U ∩ Ũ) ← Hk

cdR(M) ← Hk
cdR(U)⊕Hk

cdR(Ũ) ← Hk
cdR(U ∩ Ũ) ← · · ·(D.2.18)

With S1, we thus find the long exact sequence,

∅ ← H1
cdR(S

1) ← H1
cdR(U)⊕H1

cdR(Ũ) ← H1
cdR(U ∩ Ũ)

← H0
cdR(S

1) ← H0
cdR(U)⊕H0

cdR(Ũ) ← H0
cdR(U ∩ Ũ) ← ∅ (D.2.19)

resulting in, with H0
cdR(R) = ∅ and H1

cdR(R) = R,

∅ ← H1
cdR(S

1) = R ← R⊕R ← R⊕R ← H0
cdR(S

1) = R ← ∅ (D.2.20)

with the middle map reducingR⊕R toR. The resultingHq
cdR(S

1)’s are in accord with

the fact that, by definition, HcdR = HdR for a compact manifold with no boundary.
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Compact de Rham of Sn

Repeating the previous exercise for Sn≥2 now with the compact de Rham is also

straightforward, although details differ. For instance, we start with

Hk+1
cdR (R

n)⊕2 ← Hk+1
cdR (R× S

n−1) ← Hk
cdR(S

n) ← Hk
cdR(R

n)⊕2 (D.2.21)

which results in, when k + 1 < n,

Hk
cdR(S

n−1) = Hk+1
cdR (R× S

n−1) = Hk
cdR(S

n) (D.2.22)

again using the Künneth formula for the first equality. The resulting Hk
cdR(S

n−1) =

Hk
cdR(S

n) is the precise analog of Hk−1
dR (Sn−1) = Hk

dR(S
n) since HdR and HcdR are

Poincaré-dual to each other. The rest follows, with n − k = 1, 2, etc, bringing us to

the same (D.1.12) with Hq
cdR(S

n) = Hn−q
dR (Sn) = Hq

dR(S
n).

D.2.3 Relative Cohomology

Starting from de Rham, we cay build another type of complexes and the related short

exact sequence as follows. Suppose ψ is a map between manifolds

ψ : K → M (D.2.23)

Then, we consider a complex starting from

Ωk(ψ) ≡ Ωk(M)⊕ Ωk−1(K) (D.2.24)

with

d(ω(k), µ(k−1)) = (dω(k), ψ∗(w(k))− dµ(k−1)) (D.2.25)

One can see immediately that the cohomology Hk(ψ) of this complex would be rep-

resented by closed element w(k) of Ck(M) whose pull-back to K is exact.

The short exact sequence involving Hk(ψ) is

∅ −→ Ck−1(K) f−−→ Ck(ψ)
g−→ Ck(M) −→ ∅ (D.2.26)
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with f(µ(k−1)) = (0, µ(k−1)) and g(w(k), µ(k−1)) = w(k). These maps clearly commute

with d, and

· · · → Hk−1
dR (K) → Hk(ψ) → Hk

dR(M) → Hk
dR(K) → · · · (D.2.27)

emerges as the resulting long exact sequence.

When ψ is an inclusion, i.e., K ⊂M, we denote Hk(ψ) also as

Hk(M,K) (D.2.28)

and call it the relative cohomology with

· · · → Hk−1
dR (K) → Hk(M,K) → Hk

dR(M) → Hk
dR(K) → · · · (D.2.29)

as the long exact sequence. Note that, when K is the boundary of M, the relative

cohomology enumerates closed forms that become exact at the boundary.

Rn: Relative Equals Compact

For example, withM = Rn and K = Sn−1 its asymptotic sphere, one can read off

∅ → H0(Rn,Sn−1) → H0
dR(R

n) → H0
dR(S

n−1) → H1(Rn,Sn−1) → ∅

∅ → Hn−1
dR (Sn−1) → Hn(Rn,Sn−1) → Hn

dR(R
n) → ∅ (D.2.30)

from the long exact sequence above, say, for n > 2, thanks to H0<q<n−1(Sn−1) = ∅.
With H0

dR(R
n) = H0

dR(S
n−1) = Hn−1

dR (Sn−1) = R and Hn
dR(R

n) = ∅, we find

Hq<n(Rn,Sn−1) = ∅ , Hn(Rn,Sn−1) = R (D.2.31)

Note that these coincide with Hk
cdR(R

n).

D.3 Čech and Čech-de Rham Complexes

Although the cohomology built from the differential complex is more immediate to

physics applications, more abstract notions of (co)homology is still quite relevant.
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Singular (co)homology and Intersection (co)homology are some of more fundamental

such. These rely on the notion “simplex” which is basically a triangulation of the

manifold. Perhaps the simplest combinatorial cohomology is the Čech cohomology,

which made a brief appearance earlier in the context of G-structures and obstruc-

tions. The Čech cohomology is also capable of reproducing de Rham cohomology of

previous section when we start building the relevant complex with locally constant

real functions, so in some sense a most distilled and minimal version of the differential

complex. We will attempt to explain briefly the constructions involved and reach in

the end a proof of the latter equivalence as well.

Imagine a manifoldM equipped with a set of charts {Ua},

M = ∪ Ua (D.3.1)

such that the intersections of arbitrary subsets thereof

Ua ∩ · · · ∩ Ua′ (D.3.2)

are either empty or continuously contractible to a point. Such a collection of charts

{Ua} is called a good cover. This should be contrasted against the double cover that

we used for the Mayer-Vietoris sequence; for Sn, the intersection of the two charts U
and Ũ we used is contractible to Sn−1.

A q-simplex means an ordered collection of (q + 1)-many Ua’s,

σA = (UA0 , . . . ,UAq) (D.3.3)

and its intersection is denoted as

|σA| = ∩qi=0 UAi . (D.3.4)

We will also use the notation |A| to denote the number of U ’s involved for σA. For

q-simplex σA, we have |A| = q + 1 by definition.

Then, we define the boundary of σA as the formal sum of (q − 1)-simplexes,

∂σA =

q∑
k=0

(−1)k+1∂kσA , (D.3.5)
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where the (q − 1) simplexes on the right are

∂kσA = (UA0 , . . . ,UAk−1
,UAk+1

, . . . ,UAq) (D.3.6)

with UAk omitted. The latter’s intersection |∂kσA| is also non-empty.

D.3.1 Čech Cohomology

The Čech Cohomology valued in F starts with the definition of cochains that are

maps from such simplexes to F which is an Abelian group. We will be typically using

F = Zn,Z,R, etc. A q-cochain is an assignment,

f (q) : |σA| 7−→ f (q)(σA) ∈ F (D.3.7)

for all q-simplexes σA. When we encounter σA and σB that differ only by the ordering

of U ’s, we demand that f (q) obey

f (q)(σA) = (−1)#f (q)(σB) (D.3.8)

for any given co-chain, where (−1)# is the parity of the permutation needed to match

σA and σB.

We denote the collection of all such of q-cochains as

Cq(U ;F) (D.3.9)

and define the coboundary operator δ as a map from Cq−1(U ;F) to Cq(U ;F),

[δf ](q)(σA) =

q∑
k=0

(−1)kf (q−1)(∂kσA)

∣∣∣∣
|σA|

(D.3.10)

from which one can check easily that δδ ≡ 0.

This gives the complex

· · · δ−→ Cq−1(U ;F) δ−→ Cq(U ;F) δ−→ Cq+1(U ;F) δ−→ · · · (D.3.11)
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The kernel and the image

Ẑq ≡ {f (q) ∈ Cq(U ;F) | δ(f (q)) = 0} ,

B̂q ≡ {δ(f (q−1)) | f (q−1) ∈ Cq−1(U ;F)} (D.3.12)

define the Čech cohomology

Ĥq(M;F) = Ẑq/B̂q (D.3.13)

in a by-now familiar manner. A nontrivial fact is that this cohomology is independent

of the choice of the charts {Ua}, and depends only on the topological data ofM. for

F = R, this can be seen most clearly by establishing the equivalence between de

Rham and Čech cohomologies, as we will outline later in this subsection.

Sn, Again

As an illustration, consider S1 with charts U1,2,3, each of which covers roughly a

third of the circle with pairwise overlapping segments. Taking F = Z, C0 are set of

0-cochains

f (0) : Ui 7−→ li ∈ Z (D.3.14)

while 1-cochains are the assignment,

f (1) : Ui ∩ Uj 7−→ mi<j ∈ Z (D.3.15)

with three mutually unrelated integers mi<j, constituting C
1 = Z ⊕ Z ⊕ Z. B̂0 is

clearly empty while Ẑ0 is spanned by f (0)(σi) = f (0)(σj), i.e., l1 = l2 = l3, which

translates to

Ĥ0(S1;Z) = Z (D.3.16)

On the other hand, Ẑ1 = Ĉ1, while B̂1 is spanned by f (1)’s such that mij = li − lj.
This forces m12 +m23 = m13, hence B̂

1 = Z⊕ Z, leaving

Ĥ1(S1;Z) = Z (D.3.17)
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Of these, let us take one more example of S2 and F = Z for a further illustration.

A good cover can be found with p+ 2 ≥ 5 Ua’s in the following; UN for the northern

hemisphere falling short of the equator, US for the southern hemisphere similarly, and

Ui=1,··· ,p with p ≥ 3 covering the equatorial strip sequentially, with Ui∩Uj non-empty

between p-many adjacent Ui pairs, similarly with the S1 case where we used p = 3.

This gives,

C0 = {lN , lS, li | i = 1, · · · , p} , (D.3.18)

C1 = {mNi,mSi,mij | j = i+ 1 mod p} ,
C2 = {kNij, kSij | j = i+ 1 mod p}

The images under δ are

B̂0 = ∅ , (D.3.19)

B̂1 = {m′
Ni = lN − li,m′

Si = lS − li,m′
ij = li − lj | j = i+ 1 mod p} = Zp+2 ,

B̂2 = {k′Nij = mNi −mNj +mij, k
′
Sij = mSi −mSj +mij | j = i+ 1 mod p} = Z2p−1 ,

where the last is due to the single relation, k′N12 + k′N23 + · · ·+ k′Np1 = k′S12 + k′S23 +

· · ·+ k′Sp1.

Finally, the kernels are

Ẑ0 = {lN , lS, li | lN = lS = li , i = 1, · · · , p} = Z1 , (D.3.20)

Ẑ1 = {mNi,mSi,mij | mij = mNj −mNi = mSj −mSi , j = i+ 1 mod p} = Zp+2 .

Ẑ2 = C2 = Z2p

The middle can be seen from how the p-many mij’s together with mN1 and mS1

determine the rest.

Taking the quotients Ĥq = Ẑq/B̂q brings us to

Ĥ0(S2;Z) = Z , Ĥ1(S2;Z) = ∅ , Ĥ2(S2;Z) = Z (D.3.21)

Extending all these to all Sn is straightforward, if arduous, and gives

Ĥ0(Sn;Z) = Z , Ĥ0<q<n(Sn;Z) = ∅ , Ĥn(Sn;Z) = Z (D.3.22)
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With F = R, we would have obtained Ĥq(Sn) = Hq
dR(S

n).

D.3.2 Čech-de Rham Complex

The idea behind the Mayer-Vietoris sequence can be generalized to a good coverM =

∪Ua of the above Čech complex, from which the so-called Čech-de Rham complex

emerges where d and a generalized δ together spans a planar grid of complex. This

would eventually show how de Rham cohomology and real-valued Čech cohomology

equal each other.

We start by constructing a long exact sequence for differential forms, over a good

cover {Ua} ofM and simplexes σA=abc···,

∅ → Ωk(M)
ι−→ ⊕aΩk(σa)

δ−→ ⊕(a,b)Ω
k(σab)

δ−→ ⊕(a,b,c)Ω
k(σabc)

δ−→ (D.3.23)

where Ωk(σA) is collection of differential k-form defined over |σA|. The first map ι

is nothing but the restriction to Ua’s, while the subsequent δ’s also restriction onto

|σA|, i.e., a pull-back under |σA| ↪→ |∂jσA|, followed by a summation over j with

alternating signs

(
δw(k)

)
σA

=

|A|−1∑
j=0

(−1)jw(k)
∂jσA

∣∣∣∣
|σA|

, w(k)
σA
∈ Ωk(σA) (D.3.24)

The operation δ is identical to that of the Čech complex, except that objects being

handled are now local differential forms instead of local constants, so δδ = 0 follows

from the same algebra as the Čech complex also.

The Čech-de Rham Complex is then the planar complex consisting of

Cp,k(U ; Ω∗) ≡ ⊕|A|=p+1
A Ωk(σA) (D.3.25)

An important observation is that Ωk(M) may be regarded as the kernel of the very

first δ, say δ0,k

Ωk(M) = Ker(δ)

∣∣∣∣
C0,k(U ;Ω∗)

(D.3.26)

This follows from how, if w
(k)
Ua = w

(k)
Ub over Uab, they collectively define a differential
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form overM. Then, for each k ≥ 0,

∅ → Ωk(M)
ι−→ C0,k(U ; Ω∗)

δ−→ C1,k(U ; Ω∗)
δ−→ C2,k(U ; Ω∗)

δ−→ · · · (D.3.27)

is an exact sequence, as was stated earlier.

Let us show that this sequence is indeed exact, i.e., for any given w ∈ Cp,k(U ; Ω∗)

such that δw = 0, we can find v such that w = δv. For this let us recall the partition

of unity, which are set of smooth functions over the local charts such that
∑

a ua = 1.

Then, given a δ-closed w ∈ Cp,k(U ; Ω∗), we define an element v ∈ Cp−1,k(U ; Ω∗)

vb1···bp ≡
∑
a

uawab1···bp (D.3.28)

where we simplified the notation as wσA → wA etc. Taking δ on both sides,

(δv)b0b1···bp =
∑
j

(−1)j
(∑

a

uawab0···bj−1bj+1···bp

)
=

∑
a

uawb0b1···bp = wb0b1···bp (D.3.29)

where for the middle equality we exchanged the two summations and invoked δw = 0.

For the first map ι, its kernel consists of globally defined k-forms, and is nothing but

Ωk(M), showing that the sequence is exact.

Given how each set are differential forms over simplexes, we also have a vertical

map d whose kernel in Cp,0(U ; Ω∗) is nothing but the Čech complex,

Cp(U ;R) = Ker(d)

∣∣∣∣
Cp,0(U ;Ω∗)

(D.3.30)

One might wonder why the δ-exactness of Cp,k(U ;R) does not imply the same for

Cp(U ;R) where the δ operation remains essentially the same. If it did, we would

have Ĥ = ∅. The point is that in the above proof, the partition of the unity entered

the construction of v and δv = w crucially, which becomes unavailable for constant

functions. While w ∈ Cp(U ;R) consists of local constants, v constructed with the

help of the partition of unity as in (D.3.28) does not belong to Cp−1(U ;R).

730



With this, we also have vertical exact sequences, for each p ≥ 0,

∅ → Cp(U ;R)
ι′−→ Cp,0(U ; Ω∗)

d−→ Cp,1(U ; Ω∗)
d−→ Cp,2(U ; Ω∗)

d−→ · · · (D.3.31)

For C(p,k>1), d-closedness implies d-exactness since the intersections |σA| are all topo-
logically trivial, on par with Rn. The only exceptions are C(p,0) whose d-closed el-

ements are nothing but constants over the local charts Ua, constituting precisely

Cp(U ;R).

The combined planar complex is called the Čech-de Rham complex. Since δ’s are

constructed from pull-backs under |σA| ↪→ |∂jσA|, followed by an alternating sum

over j, dδ = δd follows naturally. We then introduce

d ≡ δ + (−1)pd , d2 = δ2 + (−1)p(δd− dδ) + d2 = 0 (D.3.32)

acting on the slanted partial sums

Cq(U ; Ω∗) ≡ ⊕p+k=q Cp,k(U ; Ω∗) (D.3.33)

This defines a complex

· · · d−→ Cq−1(U ; Ω∗)
d−→ Cq(U ; Ω∗)

d−→ Cq+1(U ; Ω∗)
d−→ · · · (D.3.34)

leading to yet another cohomology Hq(M; Ω∗).

Then, a general theorem states that

Hq
dR(M) = Hq(M; Ω∗) = Ĥq(M;R) (D.3.35)

which establishes Hq
dR(M) = Ĥq(M;R) in particular. This also justifies how the

Čech cohomology Ĥq(M;R) and also Hq(M; Ω∗) are independent of the choice of

the good cover {Ua}, since the definition of Hq
dR(M) does not rely on one.

Proof

The theorem may be proven from a simple diagram chasing. Note that a d-closed

element may be written as a formal sum of wp,q−p ∈ Cp,q−p(U ; Ω∗), such that

d(wk,q−k + wk+1,q−k−1 + · · ·+ wm,q−m) = 0 (D.3.36)
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with some 0 ≤ k ≤ m ≤ q and

dwk,q−k = 0 , δwm,q−m = 0 (D.3.37)

With these two conditions met, the rest follows from the exact nature of the hor-

izontal and vertical sequences. Since dδ = δd, dδwk,q−k = δdwk,q−k = 0, which

guarantees, given the d-exact nature of the vertical sequences, an element wk+1,q−k−1

that solves δwk,q−k = (−1)kdwk+1,q−k−1. In turn, δwk+1,q−k−1 is d-closed, so we again

have δwk+1,q−k−1 = (−1)k+1dwk+2,q−k−2, etc. This ends at some point, here in this

example with δwm,q−m = 0, if the element is a cohomology representative.

The exact nature of the horizontal sequences means that there is vm−1,q−m such

that wm,q−m = δvm−1,q−m. Subtracting dvm−1,q−m from the above d-closed element,

we obtain a shortened representative of the same cohomology element, such that

d(wk,q−k + wk+1,q−k−1 + · · ·+ w̃m−1,q−m+1) = 0 (D.3.38)

where the last entry is shifted from wm−1,q−m+1 by (−1)mdvm−1,q−m and we now have

δw̃m−1,q−m+1 = 0. This way, we can remove the lower-right entries wp,q−p with the

largest value of p step by step without changing Hq(M; Ω∗) cohomology value. In

fact, this can remove the formal sum entirely, unless we started with k = 0.

An entry w0,q sits on the left-most column of this complex, so shifting it away by

δ of something is no longer possible. This tells us that (1) a nontrivial cohomology

element of Hq(M; Ω∗) must have w0,q ̸= 0 and (2) by the above successive shifts, we

can manipulate its formal sum into the form

dw̃0,q = 0 ⇒ dw̃0,q = 0 , δw̃0,q = 0 (D.3.39)

with its single entry. In particular, the latter two conditions, combined with the

exactness of the horizontal sequences, tell us that w̃0,q is an image under the injection

ι of a d-closed element ŵ(q) of Ω∗(M). It represents a nontrivial element ofHq(M; Ω∗)

if and only if w̃0,q ̸= dv0,q−1. The latter is the same as ŵ(q) ̸= dv(q−1) in Ω∗(M) again

because w̃0,q belongs to the leftmost column of the complex and δ-closed. This shows

Hq
dR(M) = Hq(M; Ω∗).

Note that the key fact for the proof is that the horizontal sequences are all exact.

For the proof of the other equality, Hq(M; Ω∗) = Ĥq(M;R), it suffices to exchange
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the roles of δ and (−1)pd, whereby the vertical exact sequences allow us to remove

upper-left corners (wp,q−p with the smallest value of p) of a d-closed formal sum one

by one. The end result is a δ-closed w̃q,0 that is also d-closed. As above, it is an

image under ι′ of a representative of Ĥq(M;R).

One can see that the proof is quite general and does not rely on any details of δ

and d. Given a planar complex where the horizontal and the vertical sequences are all

exact when each is supplemented by the kernels of either the leftmost or the bottom

maps, one can show that the three cohomologies, those two from the supplementary

leftmost and bottom kernels, respectively, and the last from the planar complex itself

turned into a linear one, all coincide.

D.4 Homotopy
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