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Dark Matter and WIMPs

• Many evidences of Dark Matter
• Galaxy rotational curve
• CMB
• Lensing effect

• Many candidates
• Neutrino
• Cold Dark Matter (CDM)
• Weakly Interacting Massive Particle (WIMP)
• Weak-type interaction

• no electric charge, no color

• Mass range in GeV-TeV range
• WIMP miracle

• correct relic abundance is obtained at WIMP < 𝜎𝑣 >= 𝑤𝑒𝑎𝑘 𝑠𝑐𝑎𝑙𝑒
• most extensions of SM are proposed independently at that scale. 2
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Detection strategies

• Direct detection: DM interacts with SM particles (left to right)

• Indirect detection: DM annihilation (top to bottom)

• Accelerator: DM creation (bottom to top) 3



Direct Detection (DD)

• The signals are WIMP-nucleus recoil events

• Low probability requires high exposure

• Underground to avoid background

• Depend on features of targets and experimental set-ups

• Different nuclear targets and background subtraction:
• COSINE, ANAIS, DAMA, LZ, PandaX-4T, XENON-nT, PICO-60 and ect.
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Migdal effect

• We still have not observed DM

• We tried to optimize DD experiments 
to the search of sub-GeV DM

• One of main challenges in detecting low-mass DM is 
the small deposited energy below the threshold of detectors

• Migdal effect can help to overcome this problem

APPEC DM report
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Migdal effect

• During DM-nucleus scattering, the electrons inside the atom can 
become excited or de-orbit in a delayed reaction 

• Generating additional(secondary) signals as electronic recoil energy

• This allows to detect low-mass DM in unexplored regions

Matthew J. Dolan, Felix Kahlhoefer, Christopher McCabe, Directly Detecting Sub-GeV Dark Matter with Electrons from Nuclear 
Scattering, Physical Review Letters 121, 101801 (2018)



Non-Relativistic Effective Theory (NREFT)

• WIMP is slow, so that the recoil events are non-relativistic

• NREFT provides a general and efficient way to characterize results
with mass of WIMP and coupling constants

• Hamiltonian: Σ𝑖=1
𝑁 𝑐𝑖

𝑛𝒪𝑖
𝑛 + 𝑐𝑖

𝑝
𝒪𝑖
𝑝

• Non-relativistic process
• all operators must be invariant

by Galilean transformations

(𝑣 ~ 10−3𝑐 in galactic halo)

• Building operators using:

𝑖
𝑞

𝑚𝑁
, Ԧ𝑣⊥, Ԧ𝑆𝜒, Ԧ𝑆𝑁

7

Operators spin up to 1/2



• Scattering amplitude:  
1

2𝑗𝜒 + 1

1

2𝑗𝑁 + 1
Σ𝑠𝑝𝑖𝑛𝑠 𝑀

2 ≡ Σ𝑘Σ𝜏=0,1Σ𝜏′=0,1𝑅𝑘
𝜏𝜏′ Ԧ𝑣𝑇

⊥2,
Ԧ𝑞2

𝑚𝑁
2 , 𝑐𝑖

𝜏, 𝑐𝑗
𝜏′ 𝑊𝑘

𝜏𝜏′ 𝑦

• 𝑅𝑘
𝜏𝜏′ : WIMP response function

• Velocity dependence: ℛ𝑘
𝜏𝜏′ = ℛ𝑘,0

𝜏𝜏′ + ℛ𝑘,1
𝜏𝜏′ 𝑣2 − 𝑣𝑚𝑖𝑛

2

• 𝑊𝑘
𝜏𝜏′ : nuclear response function

• 𝑦 = (𝑞𝑏/2)^2

• b: harmonic oscillator size parameter

• 𝑘 = 𝑀, Δ, Σ′, Σ′′, ෩Φ′ and Φ′′

• allowed responses assuming nuclear ground state is a good approximation of P and T

Non-Relativistic Effective Theory (NREFT)
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• Scattering amplitude:  
1

2𝑗𝜒 + 1

1

2𝑗𝑁 + 1
Σ𝑠𝑝𝑖𝑛𝑠 𝑀

2 ≡ Σ𝑘Σ𝜏=0,1Σ𝜏′=0,1𝑅𝑘
𝜏𝜏′ Ԧ𝑣𝑇

⊥2,
Ԧ𝑞2

𝑚𝑁
2 , 𝑐𝑖

𝜏, 𝑐𝑗
𝜏′ 𝑊𝑘

𝜏𝜏′ 𝑦

• Differential cross section : 
𝑑𝜎

𝑑𝐸𝑅
=

1

106
2𝑚𝑁

4𝜋

𝑐2

𝑣2
1

2𝑗𝜒+1

1

2𝑗𝑁+1
Σ𝑠𝑝𝑖𝑛 𝑀

2

• Differential rate : 
𝑑𝑅

𝑑𝐸𝑅
= 𝑁𝑇 𝑣𝑚𝑖𝑛׬

𝑣𝑒𝑠𝑐 𝜌𝜒

𝑚𝜒
𝑣

𝑑𝜎

𝑑𝐸𝑅
𝑓 𝑣 𝑑𝑣

• With 𝐸𝑅 =
𝜇𝜒𝑁
2 𝑣2

𝑚𝑁
,   𝑣𝑚𝑖𝑛 =

1

2𝑚𝑁𝐸𝑅

𝑚𝑁𝐸𝑅

𝜇𝜒𝑁
+ 𝛿

Non-Relativistic Effective Theory (NREFT)

9



• Nuclear recoil event rate

RNR = 𝑀𝜏𝑒𝑥𝑝
𝜌𝜒

𝑚𝜒
׬
𝑣𝑚𝑖𝑛

𝑣𝑒𝑠𝑐 𝑑𝑣𝑇 𝑓 𝑣𝑇 𝑣𝑇 Σ𝑇 𝑁𝑇 𝐸𝑅,𝑡ℎ׬
𝐸𝑅
𝑚𝑎𝑥

𝑑𝐸𝑅 𝜁𝑒𝑥𝑝
𝑑𝜎

𝑑𝐸𝑅

• 𝑀𝜏𝑒𝑥𝑝 : exposure

• 𝑁𝑇 : the number of targets per unit mass

• 𝐸𝑅
𝑚𝑎𝑥 : maximum recoil energy

• 𝐸𝑅,𝑡ℎ : experimental energy threshold

• 𝜁𝑒𝑥𝑝 : experimental features such as quenching, resolution, efficiency, etc.

• 𝑓 𝑣𝑇 : velocity distribution function (assumed as Maxwellian)

Nuclear recoil event rate
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• 𝜒𝑇 → 𝜒′𝑇

• energy conservation: 
1

2
𝜇𝜒𝑇𝑣𝑇

2 = 𝐸𝜒′ + 𝐸𝑇 + Δ

• Δ𝑚𝑎𝑥 =
1

2
𝜇𝜒𝑇𝑣𝑇

2

𝐸𝑅 =
𝜇𝜒𝑇
2

𝑚𝑇
𝑣2 1 −

Δ

𝜇𝜒𝑇𝑣
2 − 𝑐𝑜𝑠𝜃 1 −

2Δ

𝜇𝜒𝑇𝑣
2

• 𝑣𝑚𝑖𝑛 𝐸𝑅 =
1

𝜇𝜒𝑇 2𝑚𝑇𝐸𝑅
𝑚𝑇𝐸𝑅 + 𝜇𝜒𝑇Δ

• Δ = EEM + 𝛿 : amount of lost kinetic energy of DM particle

• 𝛿 = 𝑚𝜒′ −𝑚𝜒 : mass splitting of DM particle

• 𝐸𝐸𝑀 : electromagnetic energy deposited by the ionization process

Migdal effect signal
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• Migdal event rate

RMigdal = ׬ 𝑑𝐸𝑑𝑒𝑡׬ 𝑑𝐸𝑅׬ 𝑑𝑣𝑇
𝑑3𝑅𝜒𝑇

𝑑𝐸𝑅𝑑𝑣𝑇𝑑𝐸𝑑𝑒𝑡

𝐸𝑑𝑒𝑡 = 𝑄𝐸𝑅 + 𝐸𝐸𝑀 + 𝛿 ≅ 𝐸𝐸𝑀 + 𝛿
𝐸𝐸𝑀 = 𝐸𝑒 + 𝐸𝑛𝑙

• 𝐸𝑑𝑒𝑡 : total deposited energy

• 𝐸𝑒 : outgoing electron energy

• 𝐸𝑛𝑙 : atomic de-excitation energy

• 𝑄 : quenching factor

Migdal effect signal
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• Migdal event rate
𝑑3𝑅𝜒𝑇

𝑑𝐸𝑅𝑑𝑣𝑇𝑑𝐸𝑑𝑒𝑡
=

𝑑2𝑅𝜒𝑇

𝑑𝐸𝑅𝑑𝑣𝑇
×

1

2
Σ𝑛,𝑙

𝑑

𝑑𝐸𝑒
𝑝𝑞𝑒
𝑐 𝑛𝑙 → 𝐸𝑒

𝑑2𝑅𝜒𝑇

𝑑𝐸𝑅𝑑𝑣𝑇
= 𝑀𝜏𝑒𝑥𝑝

𝜌𝜒

𝑚𝜒
𝑓 𝑣𝑇 𝑣𝑇 Σ𝑇 𝑁𝑇 𝜁𝑒𝑥𝑝

𝑑𝜎

𝑑𝐸𝑅

• 𝑝𝑞𝑒
𝑐 : ionization probability

Migdal effect signal
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Target 𝑬𝒅𝒆𝒕 interval (keV) n (from 3 up to)

XENON1T Xe [0.186,   3.8] 5

DS50 Ar [0.083,   0.106] 3

SuperCDMS Ge [0.07,    2] 3



• Impulse approximation (time scale)

• DM-nucleus collisions happen rapidly compared to the time taken for the 
atom to traverse its potential

• time of collision and emission: 𝑡 ≅ 1/𝐸𝑅 < 1/𝜔𝑝ℎ

• 𝑡 ≈ 10−12𝑠 → 𝐸𝑐𝑢𝑡 ≈ 50 meV

𝐸𝑅 =
𝜇𝜒𝑇
2

𝑚𝑇
𝑣2 1 −

Δ

𝜇𝜒𝑇𝑣
2 − 𝑐𝑜𝑠𝜃 1 −

2Δ

𝜇𝜒𝑇𝑣
2

Migdal effect signal
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𝑚𝜒 cut 𝜹 = 𝟎 keV
𝜹 = −𝟏𝟎 keV
(exothermic)

𝜹 = +𝟏𝟎 keV
(endothermic)

XENON1T 0.02 GeV 0.6 MeV 3 GeV

DS50 0.01 GeV 0.2 MeV 3 GeV

SuperCDMS 0.016 GeV 0.34 MeV 3 GeV



• Normalized Migdal Spectrum

• NREFT interaction has mild effect:
every interaction has almost same shape

• because it’s mainly determined
by ionization probability

• the type of interaction can 
affect the magnitude

Migdal spectrum

15
S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



• Endothermic (𝛿 > 0):

• normalization decreasing

• energy interval shrinking

• Exothermic (𝛿 < 0):

• normalization same

• energy interval shifting to higher range

• Migdal signal is enhanced for 𝛿 < 0

• 𝑝𝑞𝑒
𝑐 is growing linearly with 𝐸𝑅

Nuclear recoil spectrum

16
S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187
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𝑚𝜒 − 𝑐 plane 𝛿 = 0 keV

𝛿 = −10 keV



• SI type(𝑂1,3,11,12,15)

• 𝑊𝑇𝑀 : proportional to square of target mass

• 𝑊𝑇Φ′′ : non-vanishing for all nuclei

favors heavier elements

𝑚𝜒 − 𝑐 plane
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S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



• SD type(𝑂4,6,7,9,10,13,14)

• 𝑊𝑇Σ′ &𝑊𝑇Σ′′ : driven by spin of targets

• 𝑊𝑇෪Φ′ : requires targets spin > 1/2

𝑚𝜒 − 𝑐 plane

19
S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



• Others(𝑂5,8)

• velocity independent: 𝑊𝑇Δ

related to angular momentum

• velocity dependent: 𝑊𝑇𝑀

• Xe, Ar: 𝑊𝑇𝑀 dominates → SI type

• Ge: 𝑊𝑇Δ dominates → SD type

𝑚𝜒 − 𝑐 plane

20
S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



• Extend sensitivity to low WIMP mass

• 𝛿 = 0 keV

• SI type
• low 𝑚𝜒 : DS50

• high 𝑚𝜒 : XENON1T

• SD type
• low 𝑚𝜒 : SuperCDMS

• high 𝑚𝜒 : XENON1T

• 𝛿 = −10 keV

• XENON1T dominates

• become flat and saturate the 𝑚𝜒 cut

𝑚𝜒 − 𝑐 plane

21
S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



• Extend sensitivity to low WIMP mass

• 𝛿 = 0 keV

• SI type
• low 𝑚𝜒 : DS50

• high 𝑚𝜒 : XENON1T

• SD type
• low 𝑚𝜒 : SuperCDMS

• high 𝑚𝜒 : XENON1T

• 𝛿 = −10 keV

• XENON1T dominates

• become flat and saturate the 𝑚𝜒 cut

𝑚𝜒 − 𝑐 plane
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S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



• Endothermic(𝛿 > 0): very small region

• Exothermic(𝛿 < 0): Bounds are stronger with inceasing 𝛿 fixing 𝑚𝜒

𝑚𝜒 − 𝛿 plane

23
S. Kang, Stefano Scopel, Gaurav Tomar, Low-mass constraints on WIMP effective models of inelastic scattering using the 
Migdal effect, arXiv: 2407.16187



WimPyDD

• User-friendly Python code

• Calculates expected rates in any scenarios: 
• arbitrary spins
• inelastic scattering
• generic WIMP velocity distribution

• Published and can be downloaded:
• https://wimpydd.hepforge.org/

24
Injun Jeong, S. Kang, Stefano Scopel, Gaurav Tomar, WimPyDD: An object-oriented Python code for the calculation of WIMP 
direct detection signals, Computer Physics Communications, 2022.108342

https://wimpydd.hepforge.org/


Summary

• Due to the absence of a signal from WIMPs 
DD experiments have become interested in searching sub-GeV DM

• Migdal effect can help to overcome a problem of small energy deposition 
below the threshold of detectors

• Using Migdal effect we can significantly extend to low WIMP masses 
considering especially a down-scattering process

• Complementarity of various experiments can put more stringent bounds
at low mass region

25
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