Constraints on inelastic scattering of low-mass WIMP using Migdal effect

Sunghyun Kang

Based on arXiv: 2407.16187

in collaboration with Stefano Scopel and Gaurav Tomar

2025 HIGH1 WORKSHOP ON PARTICLE, STRING AND COSMOLOGY

Dark Matter and WIMPs

- Many evidences of Dark Matter
 - Galaxy rotational curve
 - CMB
 - Lensing effect
- Many candidates
 - Neutrino
 - Cold Dark Matter (CDM)
 - Weakly Interacting Massive Particle (WIMP)
 - Weak-type interaction
 - no electric charge, no color
 - Mass range in GeV-TeV range
 - WIMP miracle
 - correct relic abundance is obtained at WIMP $< \sigma v > = weak \ scale$
 - most extensions of SM are proposed independently at that scale.

APPEC DM report

Detection strategies

- Direct detection: DM interacts with SM particles (left to right)
- Indirect detection: DM annihilation (top to bottom)
- Accelerator: DM creation (bottom to top)

Direct Detection (DD)

- The signals are WIMP-nucleus recoil events
- Low probability requires high exposure
- Underground to avoid background
- Depend on features of targets and experimental set-ups
- Different nuclear targets and background subtraction:
 - COSINE, ANAIS, DAMA, LZ, PandaX-4T, XENON-nT, PICO-60 and ect.

APPEC DM report

Migdal effect

- We still have not observed DM
- We tried to optimize DD experiments to the search of sub-GeV DM

- One of main challenges in detecting low-mass DM is the small deposited energy below the threshold of detectors
- Migdal effect can help to overcome this problem

Migdal effect

- During DM-nucleus scattering, the electrons inside the atom can become excited or de-orbit in a delayed reaction
- Generating additional(secondary) signals as electronic recoil energy
- This allows to detect low-mass DM in unexplored regions

Matthew J. Dolan, Felix Kahlhoefer, Christopher McCabe, *Directly Detecting Sub-GeV Dark Matter with Electrons from Nuclear Scattering*, Physical Review Letters 121, 101801 (2018)

Non-Relativistic Effective Theory (NREFT)

- WIMP is slow, so that the recoil events are non-relativistic
- NREFT provides a general and efficient way to characterize results with mass of WIMP and coupling constants

• Hamiltonian:
$$\Sigma_{i=1}^{N} (c_{i}^{n} \mathcal{O}_{i}^{n} + c_{i}^{p} \mathcal{O}_{i}^{p})$$

- Non-relativistic process
 - all operators must be invariant by Galilean transformations $(v \sim 10^{-3}c$ in galactic halo)
- Building operators using: $i \frac{\vec{q}}{m_N}, \vec{v}^{\perp}, \vec{S}_{\chi}, \vec{S}_N$

Operators spin up to 1/2 $\mathcal{O}_1 = 1_{\chi} 1_N; \quad \mathcal{O}_2 = (v^{\perp})^2; \quad \mathcal{O}_3 = i \vec{S}_N \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^{\perp})$ $\mathcal{O}_4 = \vec{S}_{\chi} \cdot \vec{S}_N; \quad \mathcal{O}_5 = i\vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^{\perp}); \quad \mathcal{O}_6 = (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})(\vec{S}_N \cdot \frac{\vec{q}}{m_N})$ $\mathcal{O}_7 = \vec{S}_N \cdot \vec{v}^{\perp}; \quad \mathcal{O}_8 = \vec{S}_{\chi} \cdot \vec{v}^{\perp}; \quad \mathcal{O}_9 = i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$ $\mathcal{O}_{10} = i\vec{S}_N \cdot \frac{\vec{q}}{m_N}; \quad \mathcal{O}_{11} = i\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}; \quad \mathcal{O}_{12} = \vec{S}_\chi \cdot (\vec{S}_N \times \vec{v}^\perp)$ $\mathcal{O}_{13} = i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_N \cdot \frac{\vec{q}}{m_N}); \quad \mathcal{O}_{14} = i(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})(\vec{S}_N \cdot \vec{v}^{\perp})$ $\mathcal{O}_{15} = -(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N})((\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N}),$ 7

Non-Relativistic Effective Theory (NREFT)

• Scattering amplitude: $\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\Sigma_{spins}|M|^{2} \equiv \Sigma_{k}\Sigma_{\tau=0,1}\Sigma_{\tau'=0,1}R_{k}^{\tau\tau'}\left(\vec{v}_{T}^{\perp^{2}},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau},c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(y)$

- $R_k^{\tau\tau'}$: WIMP response function
 - Velocity dependence: $\mathcal{R}_{k}^{\tau\tau'} = \mathcal{R}_{k,0}^{\tau\tau'} + \mathcal{R}_{k,1}^{\tau\tau'} (v^2 v_{min}^2)$
- $W_k^{\tau\tau'}$: nuclear response function
 - $y = (qb/2)^2$
 - b: harmonic oscillator size parameter
 - k = M, Δ , Σ' , Σ'' , $\widetilde{\Phi}'$ and Φ''
 - allowed responses assuming nuclear ground state is a good approximation of P and T

Non-Relativistic Effective Theory (NREFT)

• Scattering amplitude:

$$\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\Sigma_{spins}|M|^{2} \equiv \Sigma_{k}\Sigma_{\tau=0,1}\Sigma_{\tau'=0,1}R_{k}^{\tau\tau'}\left(\vec{v}_{T}^{\perp^{2}},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau},c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(y)$$

• Differential cross section :
$$\frac{d\sigma}{dE_R} = \frac{1}{10^6} \frac{2m_N}{4\pi} \frac{c^2}{v^2} \left[\frac{1}{2j_{\chi}+1} \frac{1}{2j_N+1} \Sigma_{spin} |M|^2 \right]$$

• Differential rate :
$$\frac{dR}{dE_R} = N_T \int_{v_{min}}^{v_{esc}} \frac{\rho_{\chi}}{m_{\chi}} v \frac{d\sigma}{dE_R} f(v) dv$$

• With
$$E_R = \frac{\mu_{\chi N}^2 v^2}{m_N}$$
, $v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left| \frac{m_N E_R}{\mu_{\chi N}} + \delta \right|$

Nuclear recoil event rate

• Nuclear recoil event rate

$$R_{NR} = M\tau_{exp} \frac{\rho_{\chi}}{m_{\chi}} \int_{\nu_{min}}^{\nu_{esc}} d\nu_T f(\nu_T) \nu_T \Sigma_T N_T \int_{E_{R,th}}^{E_R^{max}} dE_R \zeta_{exp} \frac{d\sigma}{dE_R}$$

- $M\tau_{exp}$: exposure
- N_T : the number of targets per unit mass
- E_R^{max} : maximum recoil energy
- $E_{R,th}$: experimental energy threshold
- ζ_{exp} : experimental features such as quenching, resolution, efficiency, etc.
- $f(v_T)$: velocity distribution function (assumed as Maxwellian)

- $\chi T \to \chi' T$
 - energy conservation: $\frac{1}{2}\mu_{\chi T}v_T^2 = E_{\chi'} + E_T + \Delta$

•
$$\Delta_{max} = \frac{1}{2} \mu_{\chi T} v_T^2$$

•
$$E_R = \frac{\mu_{\chi T}^2}{m_T} v^2 \left[1 - \frac{\Delta}{\mu_{\chi T} v^2} - \cos\theta \sqrt{1 - \frac{2\Delta}{\mu_{\chi T} v^2}} \right]$$

• $v_{min}(E_R) = \frac{1}{\mu_{\chi T} \sqrt{2m_T E_R}} \left[m_T E_R + \mu_{\chi T} \Delta \right]$

- $\Delta = E_{EM} + \delta$: amount of lost kinetic energy of DM particle
- $\delta = m_{\chi'} m_{\chi}$: mass splitting of DM particle
- E_{EM} : electromagnetic energy deposited by the ionization process 11

• Migdal event rate

$$R_{\text{Migdal}} = \int dE_{det} \int dE_R \int d\nu_T \ \frac{d^3 R_{\chi T}}{dE_R d\nu_T dE_{det}}$$

$$\begin{split} E_{det} &= QE_R + E_{EM} + \delta \cong E_{EM} + \delta \\ E_{EM} &= E_e + E_{nl} \end{split}$$

- E_{det} : total deposited energy
- E_e : outgoing electron energy
- E_{nl} : atomic de-excitation energy
- Q : quenching factor

• Migdal event rate

$$\frac{d^{3}R_{\chi T}}{dE_{R}dv_{T}dE_{det}} = \frac{d^{2}R_{\chi T}}{dE_{R}dv_{T}} \times \frac{1}{2} \Sigma_{n,l} \frac{d}{dE_{e}} p_{q_{e}}^{c} \left(nl \to (E_{e}) \right)$$
$$\frac{d^{2}R_{\chi T}}{dE_{R}dv_{T}} = M\tau_{exp} \frac{\rho_{\chi}}{m_{\chi}} f(v_{T}) v_{T} \Sigma_{T} N_{T} \zeta_{exp} \frac{d\sigma}{dE_{R}}$$

• $p_{q_e}^c$: ionization probability

	Target	<i>E_{det}</i> interval (keV)	n (from 3 up to)
XENON1T	Xe	[0.186, 3.8]	5
DS50	Ar	[0.083, 0.106]	3
SuperCDMS	Ge	[0.07, 2]	3

- Impulse approximation (time scale)
 - DM-nucleus collisions happen rapidly compared to the time taken for the atom to traverse its potential
 - time of collision and emission: $t \cong 1/E_R < 1/\omega_{ph}$

•
$$t \approx 10^{-12} s \rightarrow E_{cut} \approx 50 \text{ meV}$$

•
$$E_R = \frac{\mu_{\chi T}^2}{m_T} v^2 \left[1 - \frac{\Delta}{\mu_{\chi T} v^2} - \cos\theta \sqrt{1 - \frac{2\Delta}{\mu_{\chi T} v^2}} \right]$$

m_χ cut	$oldsymbol{\delta} = 0 \mathbf{keV}$	$oldsymbol{\delta} = -10 ext{keV}$ (exothermic)	$oldsymbol{\delta}=+10{ m keV}$ (endothermic)
XENON1T	0.02 GeV	0.6 MeV	3 GeV
DS50	0.01 GeV	0.2 MeV	3 GeV
SuperCDMS	0.016 GeV	0.34 MeV	3 GeV

14

Migdal spectrum

- Normalized Migdal Spectrum
 - NREFT interaction has mild effect: every interaction has almost same shape
 - because it's mainly determined by ionization probability
 - the type of interaction can affect the magnitude

S. Kang, Stefano Scopel, Gaurav Tomar, *Low-mass constraints on WIMP effective models of inelastic scattering using the Migdal effect*, arXiv: 2407.16187

Nuclear recoil spectrum

- Endothermic ($\delta > 0$):
 - normalization decreasing
 - energy interval shrinking
- Exothermic ($\delta < 0$):
 - normalization same
 - energy interval shifting to higher range
- Migdal signal is enhanced for $\delta < 0$
 - p_{qe}^c is growing linearly with E_R

S. Kang, Stefano Scopel, Gaurav Tomar, *Low-mass constraints on WIMP effective models of inelastic scattering using the Migdal effect*, arXiv: 2407.16187

 $m_{\chi} - c$ plane

[GeV-2] 10

√f*C₁₀ [GeV⁻²]

10-

10-4

10-2

10-2

m_x [GeV]

 $\delta = 0 \text{ keV}$

√f * C₇ [GeV⁻²]

100

T 10°

9 104

10°

10

10

--- XENON1T-Migdal

SuperCDMS-Migdal

10

10-

m_x [GeV]

 $\delta = 0 \text{ keV}$

 m_{χ} [GeV]

--- XENON1T-Migdal SuperCDMS-Migdal

10-

10-2

10-

m_x [GeV]

100

10-2

m_x [GeV]

m_x [GeV]

10-7

10

10-3

10

m_x [GeV]

 $\delta = 0 \text{ keV}$

m_x [GeV]

10-

10

10-1

m_x [GeV]

 m_{χ} [GeV]

105

100

17

 $m_{\chi} - c$ plane

- SI type(*O*_{1,3,11,12,15})
 - W_{TM} : proportional to square of target mass
 - $W_{T\Phi''}$: non-vanishing for all nuclei favors heavier elements

S. Kang, Stefano Scopel, Gaurav Tomar, *Low-mass constraints on WIMP effective models of inelastic scattering using the Migdal effect*, arXiv: 2407.16187

 $m_{\chi} - c$ plane

- SD type(0_{4,6,7,9,10,13,14})
 - $W_{T\Sigma'} \& W_{T\Sigma''}$: driven by spin of targets
 - $W_{T\widetilde{\Phi'}}$: requires targets spin > 1/2

S. Kang, Stefano Scopel, Gaurav Tomar, *Low-mass constraints on WIMP effective models of inelastic scattering using the Migdal effect*, arXiv: 2407.16187

 $m_{\chi} - c$ plane

- Others($O_{5,8}$)
 - velocity independent: $W_{T\Delta}$ related to angular momentum
 - velocity dependent: W_{TM}
- Xe, Ar: W_{TM} dominates \rightarrow SI type
- Ge: $W_{T\Delta}$ dominates \rightarrow SD type

S. Kang, Stefano Scopel, Gaurav Tomar, *Low-mass constraints on WIMP effective models of inelastic scattering using the Migdal effect*, arXiv: 2407.16187

$$m_{\chi} - c$$
 plane

- Extend sensitivity to low WIMP mass
- $\delta = 0 \text{ keV}$
 - SI type
 - low m_{χ} : DS50
 - high m_{χ} : XENON1T
 - SD type
 - low m_{χ} : SuperCDMS
 - high m_{χ} : XENON1T
- $\delta = -10 \text{ keV}$
 - XENON1T dominates
 - become flat and saturate the m_{χ} cut

21

$$m_{\chi} - c$$
 plane

- Extend sensitivity to low WIMP mass
- $\delta = 0 \text{ keV}$
 - SI type
 - low m_{χ} : DS50
 - high m_{χ} : XENON1T
 - SD type
 - low m_{χ} : SuperCDMS
 - high m_{χ} : XENON1T
- $\delta = -10 \text{ keV}$
 - XENON1T dominates
 - become flat and saturate the m_{χ} cut

22

$$m_{\chi} - \delta$$
 plane

- Endothermic($\delta > 0$): very small region
- Exothermic($\delta < 0$): Bounds are stronger with inceasing $|\delta|$ fixing m_{χ}

S. Kang, Stefano Scopel, Gaurav Tomar, *Low-mass constraints on WIMP effective models of inelastic scattering using the Migdal effect*, arXiv: 2407.16187

WimPyDD

• User-friendly Python code

WimPyDD

WimPyDD is a object-oriented and customizable Python code that calculates accurate predictions for the expected rates in WIMP direct-detection experiments within the framework of Galilean-invariant nonrelativistic effective theory. WimPyDD handles different scenarios including inelastic scattering, WIMP of arbitrary spin and a generic velocity distribution of WIMP in the Galactic halo.

WimPyDD is written by Stefano Scopel, Gaurav Tomar, Sunghyun Kang, and Injun jeong.

- Calculates expected rates in any scenarios:
 - arbitrary spins
 - inelastic scattering
 - generic WIMP velocity distribution
- Published and can be downloaded:
 - <u>https://wimpydd.hepforge.org/</u>

24

Injun Jeong, S. Kang, Stefano Scopel, Gaurav Tomar, *WimPyDD: An object-oriented Python code for the calculation of WIMP direct detection signals*, Computer Physics Communications, 2022.108342

Summary

- Due to the absence of a signal from WIMPs DD experiments have become interested in searching sub-GeV DM
- Migdal effect can help to overcome a problem of small energy deposition below the threshold of detectors
- Using Migdal effect we can significantly extend to low WIMP masses considering especially a down-scattering process
- Complementarity of various experiments can put more stringent bounds at low mass region