

Machine learning studies for dark sector at future e+e- colliders

2025. 1. 16

Kihyeon Cho^{1, 2} ¹University of Science and Technology, ²Korea Institute of Science and Technology Information

Kihong Park, Kyungho Kim, Alexei Sytov and Kihyeon Cho, JKPS 84, 403-426 (2024).

Working with

- Kihong Park* (UST/KISTI)
- Kyungho Kim (KISTI)
- Alexei Sytov (INFN)

Contents

- 1. Theoretical motivation
- 2. Methodology
- 3. Cross-section dependence
- 4. Study of dark photons e+e- \rightarrow A'A' and A'A' γ
- 5. Conclusion

1. Theoretical motivation

Dark photon

- A hypothetical particle mediating the Standard Model (known) and dark sector (unknown)
- Could decay into the SM particles which are detectable

<Dark sector scheme with the SM [1]>

The Standard Model (Known)

Dark photon decaying into the SM particles

• Through kinetic mixing between dark photon and photon

<Branching fraction of dark photon decaying into the SM particles [1]>

• Dark photon (A') decaying into a **muon pair** ($\mu^+\mu^-$) [1, 2]

Brian Shuve and Itay Yavin, Phys. Rev. D, 89, 113004 (2014).
 Insung Yeo and Kihyeon Cho, J. Astron. Space Sci. 35, 67-74 (2018).

- Signal modes
 - Simplified Model

<The simplified model between UV and EFT [1]>

K. Park and <u>K. Cho</u>, J. Astron. Space Sci. 38(1), 55-63, 38(1), 55-63 (2021). K. Park, K. Kim and <u>K. Cho</u>, J. Astron. Space Sci. 39(1), 1-10 (2022).

Kentarou Mawatari, KAIST-KAIX workshop (2019.7.15)

Background modes

• Dominant the SM background ($\sigma_{SM} \gg \sigma_{DS}$)

- Background modes: $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ and $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-\gamma$
 - Cross-section depending on the center-of-mass energy (\sqrt{s})

- Strategy
 - Complex process & sufficient event generation ⇒ KISTI-5 supercomputer
 - Should be removed as many as possible ⇒ Machine learning

Future electron-positron collider experiments

Spec.	CEPC/CEPC	FCC-ee/IDEA	ILC/ILD
Accelerator/ Detector	Circular Electron-Positron Collider (CEPC)/CEPC	Future Circular Collider (FCC)-ee/ Innovative Detector for Electron- positron Accelerators (IDEA)	International Linear Collider(ILC)/ International Linear Detector(ILD)
	(2030~, IHEP/China) UB: Line: to Booster ID: Expective Collider Ring UB: Line: to Booster ID: Expective Collider Ring ID: Stretc Collider Ring Stretc Collider Ring Stretc Collider Ring Circular Electron-Positron Collider	(2038~, CERN/Switzerland)	(2034~, Japan)
Circum. or length [km]	100	97.75	20.5 31 40
\sqrt{s} [GeV]	91, 160, <mark>240</mark>	91, 160, 250, 350	250 500 1000
Place	IHEP/China	CERN/Switzerland	Japan
Data taking	2030~	2038~	2034~

Zyla P. A. et al., Review of Particle Physics, Prog. Theor. Exp. Phys. 2020(8), (2020).

2. Methodology

Flowchart of the study

1 Physics simulation

• Signal event generation using MadGraph5

Background event generation using MadGraph5

② Detector simulation

Using **Delphes** for Belle II, CEPC, FCC-ee and ILC

SuperKEKB/Belle II

•

FCC-ee/IDEA

CEPC/CEPC

ILC/**ILD**

3 **Reconstruction**

- Dark photon selection
 - by choosing Right combination of muon pair which its invariant mass difference is smaller than the other.
 - If $\left| M_{\mu_{1}^{+}\mu_{3}^{-}} M_{\mu_{2}^{+}\mu_{4}^{-}} \right| \ge \left| M_{\mu_{1}^{+}\mu_{4}^{-}} M_{\mu_{2}^{+}\mu_{3}^{-}} \right|$ in an event, then $\mu_{1}^{+}\mu_{4}^{-}$ and $\mu_{2}^{+}\mu_{3}^{-}$ are right combination.
 - Meanwhile, $\mu_1^+\mu_3^-$ and $\mu_2^+\mu_4^-$ are wrong combination.

④ Machine learning

- Examined Kaggle and TMVA method
- Compared classifiers performance
- Choose the BDT classifier based on TMVA method

(An example) Belle II with A'A' mode based on TMVA

5 Analysis

- Detector resolution (σ)
- Estimate number of signal events (N_{exp})
- Detector efficiency (ε_{det})

(An example) CEPC 240 GeV $A'A'\gamma$

- Fitting: Double Gaussian function
- $m = 240.0 \pm 0.0$
- $\sigma_1 = 0.5614 \pm 0.0066$
- $\sigma_2 = 1.1232 \pm 0.0062$
- $N_{exp} = 168879 \pm 2503$
- $\varepsilon_{det} = 33.8 \pm 0.5 \%$

3. Cross-section dependence

Cross-section depending on the Center-of-mass energy (\sqrt{s})

Cross-section depending on the coupling constant (g')

 $e^+ e^- \rightarrow A' A'$ with $A' \rightarrow \mu^+ \mu^-$

 $e^+ e^- \rightarrow A' A' \gamma$ with $A' \rightarrow \mu^+ \mu^-$

Cross-section depending on the dark photon mass ($m_{A^{\prime}}$)

Dark photon masses with the highest cross-section

Accelerator (Detector		<i>m_{A'}</i>	[GeV]
Acceleratory Detector	√s [Gev]	$e^+e^- \rightarrow A'A'$	$e^+e^- \rightarrow A'A'\gamma$
	91	25	25
CEPC/CEPC	160	75	75
	240	100	100
	91	25	25
	160	75	75
FCC-EE/IDEA	250	100	100
	350	150	150
	250	100	100
ILC/ILD	500	200	200
	1000	450	400

Kihong Park, Kyungho Kim, Alexei Sytov and Kihyeon Cho, JKPS 84, 403-426 (2024).

4. Study of $e^+e^- \rightarrow A'A'$ and $A'A'\gamma$ using machine learning

Configuration of the study

• Configuration of generation and machine learning

Process	Parameters	Signal modes $e^+e^- \rightarrow A'A'(n)$	Background modes $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-(\chi)$	
	Event generator	$\frac{e e \rightarrow A A (\gamma)}{MadGraph5 ver. 2.6.6}$		
	Model	The simplified model	The Standard Model	
	No. of events	1,000,000	~1,000,000	
Generation	\sqrt{s} [GeV]	91, 160, 240, 250, 350, 500, 1000	91, 160, 240, 250, 350, 500, 1000	
	Decay width [GeV]	6.7×10^{-6}	-	
	Coupling constants $(g_{l\ 11}^{\nu}, g_{l\ 22}^{\nu})$	0.1	-	
	Model	Boosted Decision Trees		
Machine learning (TMVA)	Input variables	$p_{T\mu_{1}}, p_{T\mu_{2}}, p_{T\mu_{3}}, p_{T\mu_{4}}, \eta_{\mu_{1}}, \eta_{\mu_{2}}, \eta_{\mu_{3}}, \eta_{\mu_{4}},$ $\phi_{\mu_{1}}, \phi_{\mu_{2}}, \phi_{\mu_{3}}, \phi_{\mu_{4}}, m_{A'_{1}}, m_{A'_{2}}, p_{TA'_{1}} \text{ and } p_{TA'_{2}}$ (16 variables) for both $e^{+}e^{-} \rightarrow A'A'$ and $e^{+}e^{-} \rightarrow A'A'\gamma$		
	-	$p_{T_{\gamma}}, \eta_{\gamma}, \phi_{\gamma} \text{ and } E_{\gamma}$ (4 more variables for γ -included decay modes) for $e^+e^- \rightarrow A'A'\gamma$		

• (An example) CEPC at \sqrt{s} = 240 GeV, $m_{A'}$ = 100 GeV

CEPC at \sqrt{s} = 240 GeV, $m_{A'}$ = 100 GeV

Signal

Backgroun

d

Sig. / Back.

472,155

388,956

1.2

470,580

596

789.6

Figure of merit: $S/\sqrt{S+B}$ S: Number of signal **B:** Number of background Optimal BDT cut: 0.04 BDT where a figure of merit is

maximized

-	K.Park, K, Kim, A. Sytov and K. Cho, JK

658.0

Step 5

- Fitting: Double Gaussian function
- $m = 240.0 \pm 0.0$
- $\sigma_1 = 0.3466 \pm 0.0012$
- $\sigma_2 = 1.0183 \pm 0.0025$
- $N_{exp} = 470580 \pm 1598$
- $\varepsilon_{det} = 94.1 \pm 0.3 \%$

PS 84 (2024) 403-425.

• The summary of $e^+e^- \rightarrow A'A'$ mode

- Performed same procedure to CEPC(91, 160, 240 GeV), FCC-ee(91, 160, 250, 350 GeV) and ILC(250, 500, 1000 GeV)
- Signal($\mu^+\mu^-\mu^+\mu^-$)/Background($\mu^+\mu^-\mu^+\mu^-$) improved **a factor of O(100~10000).** Shown as an example

Accolrator	\sqrt{s} m [GeV] [G	m .	S/B	Signal $M(\mu^+\mu^-\mu^-\mu^-)$			
Detector		[GeV]	improve ment	N _{exp}	Width [GeV]	Detector efficiency [%]	
CEPC/CEPC	91	25	847.3	461860 ± 1024	0.4524 ± 0.0007	92.4 ± 0.2	
	160	75	680.6	471670 ± 1069	0.5599 ± 0.0004	94.3 ± 0.2	
	240	100	658.0	470580 ± 1598	1.0183 ± 0.0025	94.1 ± 0.3	
FCC- ee/IDEA	91	25	11781.2	438260 ± 662	0.0887 ± 0.0001	87.7 ± 0.1	
	160	75	876.3	395660 ± 629	0.2196 ± 0.0002	79.1 ± 0.1	
	250	100	1455.8	$\textbf{417540} \pm \textbf{646}$	0.5892 ± 0.0006	83.5 ± 0.1	
	350	150	486.0	$\textbf{408960} \pm \textbf{639}$	1.0838 ± 0.0012	81.8 ± 0.1	
ILC/ILD	250	100	713.6	$\textbf{355080} \pm \textbf{1287}$	1.0901 ± 0.0030	71.0 ± 0.3	
	500	200	709.6	366552 ± 1776	3.0506 ± 0.0133	73.3 ± 0.4	
	1000	450	288.1	369880 ± 1113	6.4568 ± 0.0162	74.0 ± 0.2	

K.Park, K, Kim, A. Sytov and K. Cho, JKPS 84 (2024) 403-425.

• (An example) CEPC at \sqrt{s} = 240 GeV, $m_{A'}$ = 100 GeV

CEPC at \sqrt{s} = 240 GeV, $m_{A'}$ = 100 GeV

• The summary of $e^+e^- \rightarrow A'A'\gamma$ mode

- Performed same procedure to CEPC(91, 160, 240 GeV), FCC-ee(91, 160, 250, 350 ٠ GeV) and ILC(250, 500, 1000 GeV)
- Signal($\mu^+\mu^-\mu^+\mu^-\gamma$)/Background($\mu^+\mu^-\mu^+\mu^-\gamma$) improved **a factor of O(100~1000)**

Accelrator/ Detector	\sqrt{s} [GeV] [0	m .	S/B improvem ent	Signal $M(\mu^+\mu^-\mu^-\mu^-\gamma)$		
		[GeV]		N _{exp}	Width [GeV]	Detector efficiency [%]
CEPC/CEPC	91	25	731.0	$\textbf{161812} \pm \textbf{4688}$	0.8255 ± 0.0092	32.4 <u>+</u> 0.9
	160	75	717.1	97386 ± 2744	0.7125 ± 0.0077	19.5 <u>+</u> 0.5
	240	100	709.6	168879 <u>+</u> 2503	1.1232 ± 0.0062	33.8 <u>+</u> 0.5
FCC- ee/IDEA	91	25	409.2	$\textbf{151360} \pm \textbf{389}$	0.3825 ± 0.0007	30.3 <u>+</u> 0.1
	160	75	1328.9	80929 <u>+</u> 284	0.3090 ± 0.0008	16.2 <u>+</u> 0.1
	250	100	3694.7	$\textbf{155180} \pm \textbf{394}$	0.6688 ± 0.0012	31.0 <u>+</u> 0.1
	350	150	404.6	$\textbf{152560} \pm \textbf{391}$	1.0709 ± 0.0019	30.5 <u>+</u> 0.1
ILC/ILD	250	100	727.9	27223 ± 3210	1.1605 ± 0.0320	5.4 <u>+</u> 0.6
	500	200	532.0	$\textbf{52136} \pm \textbf{1246}$	2.7050 ± 0.0420	10.4 <u>+</u> 0.2
	1000	450	350.9	77053 <u>+</u> 662	6.9436 ± 0.0473	15.4 ± 0.1

K.Park, K, Kim, A. Sytov and K. Cho, JKPS 84 (2024) 403-425.

Shown as an example

Conclusion

- We studied dark photons using the simplified model at future e+e- colliders: CEPC, FCC-ee and ILC.
- Using BDT based on TMVA, we reduced the SM background significantly for the double dark photon modes:

 $e^+e^- \rightarrow A'A'$ and $e^+e^- \rightarrow A'A'\gamma$

• Estimated expected of signal events and detector efficiencies.

- ⇒ For dark photon searches, this study provides:
 - ✓ A reference at future electron-positron experiments
 - ✓ A methodology at current experiments (ex. Belle II)

ACKNOWLEDGMENTS

- The major institutional R&D program, KISTI (No. K25L2M2C3-01)
- This study was also supported by National Supercomputing Center with supercomputing resources including technical support (TS-2024-IN-0017).

Thank you for your attention.

cho@kisti.re.kr