Dark matter from inflationary quantum fluctuations

Mohammad Ali Gorji Institute for Basic Science (CTPU-CGA)

KIAS-IBS-CKC Joint Workshop on Particle, String and Cosmology

In collaboration with Misao Sasaki & Teruaki Suyama [arXiv:2501.03444]

January 14, 2025

Malik & Matravers, How Cosmologists Explain the Universe to Friends and Family

- Inflation generates the seed for the large scale structures.
- Most of the proposed scenarios deal with the production of DM during the radiation domination.
- Why not during inflation? One difficulty is, even if DM particles produce during inflation, the energy density exponentially dilutes ···

Superhorizon modes freeze and survive!

DM from inflationary superhorizon modes

Spin 0: Scalar DM

- Polarski, Starobinsky, PRD (1994)
- Graham, Mardon, Rajendran, PRD (2016)
- . . .

Firouzjahi, MAG, Mukohyama, Talebian, PRD (2022)

• ...

Spin 1: Vector DM

Vector modes do not freeze at superhorizon due to conformal symmetry. Direct interaction between DM and inflaton is needed.

- Bastero-Gil, Santiago, Ubaldi, Vega-Morales, JCAP (2019)
- Nakai, Namba, Wang, JHEP (2020)
- Salehian, MAG, Firouzjahi, Mukohyama, PRD (2021)
- Firouzjahi, MAG, Mukohyama, Salehian, JHEP (2021)
- • • •

Spin 2: Tensor DM

Spin-2 fields cannot have mass smaller than Hubble parameter during inflation due to the Higuchi bound. Direct interaction between the DM field and inflaton is needed.

MAG, JCAP (2023)

Massive modes in an expanding universe

There are three independent scales:

- Physical momentum $\frac{k}{a(t)}$
- Hubble parameter H(t)
- Mass m

Subhorizon $H \ll \frac{k}{a}$

 $\frac{Massive}{m \gg H}$

 $\underset{m}{\text{Massless}}$

What do we need for dark matter?

• During inflation:

 $H \gg \frac{k}{a}$ & $H \gg m \Rightarrow$ Massless modes freeze at superhorizon

After inflation before matter-radiation equality:

$$m\ggrac{k}{a}$$
 & $m\gg H\Rightarrow
ho\propto a^{-3}$

$$H_{
m eq} \lesssim \textit{m} \ll H_{
m inf}$$

A free spectator scalar field during inflation

$$S = \frac{1}{2} \int \mathrm{d}^3 x \, \mathrm{d}t \, a^3 \left[\dot{X}^2 - (\nabla_i X)^2 - m^2 X^2 \right]$$

Going to Fourier space, quantizing $X_{\mathbf{k}}(\tau) = X_k(\tau) \, \hat{a}_{\mathbf{k}} + X_k^*(\tau) \, \hat{a}_{-\mathbf{k}}^{\dagger}$, the mode function satisfies

$$\ddot{X}_k + 3H\dot{X}_k + (k^2/a^2 + m^2)X_k = 0$$

• During inflation:

 $H \gg \frac{k}{a} \& H \gg m \Rightarrow$ $X_k \sim \text{constant}$ Bunch-Davies initial condition

$$\mathcal{P}_X(k, au) = rac{k^3}{2\pi^2} ig| X_k ig|^2 = \Big(rac{H_{ ext{inf}}}{2\pi}\Big)^2$$

X has a scale-invariant power spectrum

• After inflation: $m \gg \frac{k}{a} \& m \gg H \Rightarrow$ $X_k \sim a^{-3/2} \cos(mt)$ $\rho_X = \frac{1}{2} \left[\dot{X}^2 + (\nabla_i X)^2 + m^2 X^2 \right]$ $\bar{\rho}_X(t) = \langle \rho_X \rangle \approx m^2 \langle X \rangle^2 / 2 \propto a^{-3}$

The averaged energy density scales like dark matter

Large fluctuations in DM energy density

Using Gaussianity of X ($\langle X^3 \rangle = 0, \cdots$) & $\langle X \rangle^2 \ll \langle X^2 \rangle$, for DM density contrast $\delta_X = (\rho_X - \bar{\rho}_X)/\bar{\rho}_X$, we find

$$\langle \delta_X^2 \rangle = 2, \qquad \langle \delta_X^3 \rangle = 8, \qquad \cdots$$

X has scale-invariant power spectrum and there will be O(1) fluctuations at all scales. In particular, there will be large isocurvature perturbations at CMB scales $k \sim k_{eq}!!$

We need a model which only enhances small scales

$$k \gg k_{
m eq}$$
 ($k_{
m eq} \sim 10^{-2} {
m Mpc}^{-1}$)

Simple case: Non-minimal coupling (e.g. interaction with inflaton)

$$S = \frac{1}{2} \int d^3x \, dt \, a^3 f(t)^2 \left[\dot{X}^2 - (\nabla_i X)^2 - m^2 X^2 \right]$$

Choosing f(t) such that the initial power spectrum becomes

$$\mathcal{P}_{X,i}(k) = \mathcal{A}\left(\frac{H_{\mathrm{inf}}}{2\pi}\right)^2 \delta\left[\ln\left(k/k_p\right)\right]; \qquad k_p \gg k_{\mathrm{eq}}$$

Evolution after inflation

The time evolution is given by $X_k(t) = T_m(k, t)X_{k,i}$ where, assuming f = 1 after inflation, transfer function satisfies

$$\ddot{T}_m + 3H\,\dot{T}_m + \left(\frac{k^2}{a^2} + \frac{m^2}{m}\right)\,T_m = 0$$

The above equation can be analytically solved (see [MAG, M. Sasaki, T. Suyama, arXiv:2501.03444]).

In the limit $m \gg \frac{k}{a} \& m \gg H$, the spectral energy density $\Omega_X(k,t) \equiv \frac{1}{3M_{\rm Pl}^2 H^2} \frac{\mathrm{d}\bar{\rho}_X}{\mathrm{d}\ln k}$ becomes function of three parameters

$$\Omega_X = \frac{\beta_{\inf}}{24} \sqrt{\frac{m}{H}} |\mathcal{I}_m(k)|^2 \delta \left[\ln \left(k/k_p \right) \right]; \qquad \mathcal{I}_m(k) \equiv \frac{\sqrt{\frac{\pi}{2}} e^{-\frac{\pi k}{8m_k}}}{\Gamma \left(\frac{3}{4} + \frac{ik}{4m_{a_k}} \right)},$$

where $\beta_{inf} \equiv \mathcal{P}_{\mathcal{R}} r \mathcal{A}$ with $r = \mathcal{P}_h / \mathcal{P}_{\mathcal{R}}$ is tensor-to-scalar ratio, $\mathcal{P}_h = 2\mathcal{H}_{inf}^2 / (\pi^2 M_{Pl}^2)$ and $\mathcal{P}_{\mathcal{R}}$ are the power spectra of GWs and curvature perturbation.

Constraints on the model parameters m, k_p, β_{inf}

We assume that X constitutes all dark matter:

$$ar{\Omega}_X(au_{
m eq}) = \int \Omega_X(au_{
m eq},k) {
m d} \ln k = 1/2$$

• Freezing at superhorizon:

$$m \ll H_{
m inf} \sim \left(rac{r}{0.03}
ight)^{1/2} \left(rac{\mathcal{P}_{\mathcal{R}}}{3 imes 10^{-10}}
ight)^{1/2} 10^{13} \, {
m GeV}$$

Non-relativistic condition:

$$\frac{m}{1\,\mathrm{eV}} \gg 10^{-26} \frac{k_p}{\mathrm{Mpc}^{-1}}$$

• CMB and LSS observations:

 $k_p\gtrsim 10^3k_{
m obs}\sim 10\,{
m kpc}^{-1}$

• Galaxy observations: The dark matter's de Broglie wavelength should be smaller than its halo

 $m\gtrsim 10^{-21}\,{
m eV}$

Constraints on the model parameters m and k_p

We have set $H_{
m inf}=10^{13}\,{
m GeV}$ which corresponds to $r\sim 0.03$

Formation of subsolar halos

t_s: Time that is taken for the wave to propagate at the distance λ_p ∝ a/k_p (t_s ~ a²m/k_p²)
t_f: Free fall time (t_f ~ 1/√Gρ ~ H⁻¹)
Halos form when t_f < t_s:

$$rac{k_{p}}{1\,{
m kpc}^{-1}} < \mathcal{Z}(z) \left(rac{m}{10^{-18}{
m eV}}
ight)^{1/2}$$

where $\mathcal{Z}(z) \simeq \mathcal{O}(1)$ for 0 < z < 3000. Equivalently

$$m>H_p$$
; $H_p=k_p/a_p$

The typical size of halos:

$$M_h \sim \frac{4\pi}{3} \rho_m k_p^{-3} \sim \mathcal{O}(10^2) M_{\odot} \left(\frac{k_p}{1 \text{ kpc}^{-1}}\right)^{-3}$$

Imposing $k_p\gtrsim 10^3k_{
m obs}\sim 10\,{
m kpc}^{-1}$ to respect CMB and LSS obs. $M_h<{\cal O}(10^{-1})M_\odot$

The modes that are non-relativistic at the time of horizon re-entry forms subsolar halos after matter-radiation equality.

Constraints on the model parameters m and k_p

We have set $H_{
m inf}=10^{13}\,{
m GeV}$ which corresponds to $r\sim 0.03$

Summary

- Light spectator fields with $m \ll H_{\rm inf}$ may exist during inflation and can play the role of DM.
- To be consistent with CMB and LSS observations, the contribution of the spectator field to the DM power spectrum must be completely suppressed at scales $k \gtrsim 10 \,\mathrm{Mpc}^{-1}$.
- The well-known lower bound $m \gtrsim 10^{-21} \, {\rm eV}$ from galaxy observations applies to these scenarios.
- The modes that are non-relativistic at the time of horizon reentry forms subsolar mass halos after matter-radiation equality.
- Apart from some details, these results apply to DM with any spin that originates from inflationary quantum fluctuations.
- While spin-0 and spin-1 spectator fields contribute negligibly to GWs, spin-2 fields can contribute significantly [MAG, Sasaki, PLB (2023), MAG, Sasaki, Suyama, PLB (2023)]. We may find how spin-2 DM differs from spin-0 and spin-1 [MAG, Sasaki, Suyama, work in progress].

Thank you!