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Malik & Matravers, How Cosmologists Explain the Universe to Friends and Family

• Inflation generates the seed for the large scale structures.
• Most of the proposed scenarios deal with the production of
DM during the radiation domination.

• Why not during inflation?

One di�culty is, even if DM particles produce during inflation,
the energy density exponentially dilutes · · ·

Superhorizon modes freeze and survive!



DM from inflationary superhorizon modes

Spin 0: Scalar DM

• Polarski, Starobinsky, PRD (1994)

• Graham, Mardon, Rajendran, PRD (2016)

• · · ·
• Firouzjahi, MAG, Mukohyama, Talebian, PRD (2022)

• · · ·

Spin 1: Vector DM

Vector modes do not freeze at superhorizon due to conformal
symmetry. Direct interaction between DM and inflaton is needed.

• Bastero-Gil, Santiago, Ubaldi, Vega-Morales, JCAP (2019)

• Nakai, Namba, Wang, JHEP (2020)

• Salehian, MAG, Firouzjahi, Mukohyama, PRD (2021)

• Firouzjahi, MAG, Mukohyama, Salehian, JHEP (2021)

• · · ·

Spin 2: Tensor DM

Spin-2 fields cannot have mass smaller than Hubble parameter
during inflation due to the Higuchi bound. Direct interaction
between the DM field and inflaton is needed.
• MAG, JCAP (2023)



Massive modes in an expanding universe

There are three independent scales:
• Physical momentum k

a(t)

• Hubble parameter H(t)
• Mass m
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What do we need for dark matter?

• During inflation:
H �

k

a
& H � m ) Massless modes freeze at superhorizon

• After inflation before matter-radiation equality:
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A free spectator scalar field during inflation
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Going to Fourier space, quantizing Xk(⌧) = Xk(⌧) âk + X ⇤
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Xk ⇠ constant
Bunch-Davies initial condition
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X has a scale-invariant power
spectrum

• After inflation:
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hX i
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The averaged energy density
scales like dark matter



Large fluctuations in DM energy density

Using Gaussianity of X (hX 3
i = 0, · · · ) & hX i

2
⌧ hX 2

i, for DM
density contrast �X = (⇢X � ⇢̄X )/⇢̄X , we find

h�2
X
i = 2, h�3

X
i = 8, · · ·

X has scale-invariant power spectrum and there will be O(1)
fluctuations at all scales. In particular, there will be large
isocurvature perturbations at CMB scales k ⇠ keq!!

We need a model which only enhances small scales

k � keq (keq ⇠ 10�2Mpc�1)

Simple case: Non-minimal coupling (e.g. interaction with inflaton)
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Choosing f (t) such that the initial power spectrum becomes

PX ,i(k) = A
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Evolution after inflation

The time evolution is given by Xk(t) = Tm(k , t)Xk,i where,
assuming f = 1 after inflation, transfer function satisfies

T̈m + 3H Ṫm +
�
k2/a2 +m2

�
Tm = 0

The above equation can be analytically solved (see [MAG, M.
Sasaki, T. Suyama, arXiv:2501.03444]).

In the limit m �
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where �inf ⌘ PR r A with r = Ph/PR is tensor-to-scalar ratio,
Ph = 2H2

inf/(⇡
2M2

Pl) and PR are the power spectra of GWs and
curvature perturbation.



Constraints on the model parameters m, kp, �inf

We assume that X constitutes all dark matter:

⌦̄X (⌧eq) =

Z
⌦X (⌧eq, k)d ln k = 1/2

• Freezing at superhorizon:
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• Non-relativistic condition:

m

1 eV
� 10�26

kp
Mpc�1

• CMB and LSS observations:

kp & 103kobs ⇠ 10 kpc�1

• Galaxy observations: The dark matter’s de Broglie
wavelength should be smaller than its halo

m & 10�21 eV



Constraints on the model parameters m and kp

We have set Hinf = 1013 GeV which corresponds to r ⇠ 0.03



Formation of subsolar halos

• ts : Time that is taken for the wave to propagate at the
distance �p / a/kp (ts ⇠ a2m/k2p )

• tf : Free fall time (tf ⇠ 1/
p
G⇢ ⇠ H�1)

Halos form when tf < ts :
kp

1 kpc�1 < Z(z)
�

m

10�18eV
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where Z(z) ' O(1) for 0 < z < 3000. Equivalently

m > Hp ; Hp = kp/ap

The typical size of halos:
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Imposing kp & 103kobs ⇠ 10 kpc�1 to respect CMB and LSS obs.

Mh < O(10�1)M�

The modes that are non-relativistic at the time of horizon

re-entry forms subsolar halos after matter-radiation equality.



Constraints on the model parameters m and kp

We have set Hinf = 1013 GeV which corresponds to r ⇠ 0.03



Summary

• Light spectator fields with m ⌧ Hinf may exist during inflation
and can play the role of DM.

• To be consistent with CMB and LSS observations, the contri-
bution of the spectator field to the DM power spectrum must
be completely suppressed at scales k & 10Mpc�1.

• The well-known lower bound m & 10�21 eV from galaxy obser-
vations applies to these scenarios.

• The modes that are non-relativistic at the time of horizon re-
entry forms subsolar mass halos after matter-radiation equality.

• Apart from some details, these results apply to DM with any
spin that originates from inflationary quantum fluctuations.

• While spin-0 and spin-1 spectator fields contribute negligibly to
GWs, spin-2 fields can contribute significantly [MAG, Sasaki, PLB (2023),

MAG, Sasaki, Suyama, PLB (2023)]. We may find how spin-2 DM di↵ers from
spin-0 and spin-1 [MAG, Sasaki, Suyama, work in progress].

Thank you!


