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MOTIVATION

Can we replace or complete the inflation model?
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ALTERNATIVES TO INFLATION

All these models are impossible in General Relativity!

Behavior in the asymptotic past (Einstein frame).

model a H Ḣ singularity

Genesis const > 0 0 Ḣ > 0 no

Bounce ∞ 0 Ḣ < 0, Ḣb > 0 no

Modified Genesis 0 0 Ḣ > 0 yes

NEC - violating inflation 0 const > 0 Ḣ > 0 yes
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BOUNCE

t

H

Figure 1: Hubble parameter: bounce

Qui’2011,2013; Easson’2011; Cai’2012;
Osipov’2013; Koehn’2013; Battarra’2014; Ijjas’2016
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GENESIS

Figure 2: Hubble parameter: Genesis

Creminelli’2010, Creminelli’2012, Hinterbichler’2012, Elder’2013,
Pirtskhalava’2014, Nishi’2015, Kobayashi’2015
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NULL ENERGY CONDITION

Realization of non-singular evolution within classical field theory
requires the violation of the Null Energy Condition (NEC) Tµνnµnν > 0
(or Null Convergence Condition (NCC) Rµνnµnν > 0 for modified
gravity).

T00 = ρ, Tij = a2γijp,

Ḣ = − 12 (ρ+ p) + curvature term.

Let us use nµ = (1,a−1ν i) with γijν iν j = 1 and then NEC leads to

Tµνnµnν > 0→ ρ+ p ≥ 0→ Ḣ ≤ 0.

Penrose theorem: singularity in the past if:
• The NEC holds
• The Cauchy hypersurface is noncompact.
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IS NEC VIOLATION POSSIBLE

If one considers

L = G2(ϕ, X) +
R
2 , X = − 12g

µν∂µϕ∂νϕ,

then the NEC violation reads

ρ+ p = 2XG2X < 0, Ḣ = − 12 (ρ+ p) .

while stability conditions for scalar perturbation are

Lζζ ∝ GSζ̇2 −FS(∇ζ)2 , GS > 0, FS = − Ḣ
H2 > 0

The latter condition leads to the instabilities! Same holds for multi
field models.

One must to modify gravity!
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MODIFIED GRAVITY THEORIES
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HORNDESKI THEORY: PROPERTIES

1. The most general scalar-tensor theory of gravity!
2. Admits stable NEC - violation.
3. Many modified gravity theories, like: f(R) – gravity, Brans-Dicke
theory, Galileons, ect – are subclasses of Horndeski gravity.

Seems like a perfect candidate to build the non-standard
cosmology!
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HORNDESKI THEORY: LAGRANGIAN

Violation of NEC/NCC without obvious pathologies is possible in the
class of Horndeski theories [Horndeski’74]:

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+
G4(ϕ, X)R+ G4,X

[
(□ϕ)2 − (∇µ∇νϕ)

2]
+ G5(ϕ, X)Gµν∇µ∇νϕ

− 1
6G5,X

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3],

where X = − 1
2g
µν∂µϕ∂νϕ and □ϕ = gµν∇µ∇νϕ.
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NO-GO THEOREM

• If one works in the framework of Horndeski gravity, then at the
some point during the whole evolution (−∞ < t < +∞) of a
singularity-free universe: gradient instabilities show up at some
moment in the history→ No-Go theorem. Rubakov’2016; T.
Kobayashi’2016.

• First way: Abandon Horndeski gravity and move to the more
general theories.

• Second way: Reconsider the No-Go theorem once more!
• We want to stay within the framework of Horndeski gravity, so
we will choose the second way.
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NO-GO THEOREM

Let us consider the following perturbed ADM metric:

ds2 = −N2dt2 + γij

(
dxi + Nidt

)(
dxj + Njdt

)
,

γij = a2e2ζ(δij + hij + . . .), N = N0(1+ α), Ni = ∂iβ.

Here α and β are not physical. We work with unitary gauge δϕ = 0.
The quadratic actions for ζ and hij are given, respectively:

Lζζ = a3
[
GS
ζ̇2

N2 −
FS
a2 ζ,iζ,i

]
, Lhh =

a3
8

[
GT
ḣ2ij
N2 −

FT
a2 hij,khij,k

]
.

Remind that bounce solution is a(t) → ∞ as t→ −∞. No-Go works if∫ t

−∞
a(t)(FT + FS)dt = ∞ ,∫ +∞

t
a(t)(FT + FS)dt = ∞ .

No-Go: FS,T < 0 at some moment of time, instability.
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NO-GO THEOREM

• One way is to go beyond Horndeski or DHOST Cai’ 2016,
Creminelli’2016, Kolevatov’2017, Piao’2017

• Another way to avoid No-Go theorem for Horndeski is to obtain
such a model/solution that FS,T coefficients have asymptotics
Kobayashi’2016

FS,T → 0 as t→ −∞, where FT = 2G4.

• This means that
G4 → 0 as t→ −∞.

• Effective Planck mass goes to zero and it signalizes that we may
have strong coupling at t→ −∞.

Solution: no SC regime at t→ −∞ in some region of Lagrangian
parameters. Ageeva’2018
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THE MINIMAL SETUP

1. The function G2(ϕ, X) is necessary, since this function contains
the canonical kinetic term for the field.

2. One must include the function G3(ϕ, X) in order to be able to
perform stable NEC violation.

3. At least field-dependent function G4(ϕ) should remain. In order
to circumvent the No-Go theorem.

4. G5 = 0.

Thus, the minimal setup is

L = G2(ϕ, X)− G3(ϕ, X)□ϕ+ G4(ϕ)R .
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ADM

In ADM the Lagrangian has the following form:

L = A2(t,N) + A3(t,N)K+ A4(K2 − K2ij) + B4(t,N)R(3).

We remind that we have unitary gauge ϕ = ϕ(t). (3)Rij is the Ricci
tensor made of γij,

√
−g = N√γ, K = γijKij, (3)R = γij (3)Rij and Kij is

an extrinsic curvature of hypersurfaces t = const:

Kij ≡
1
2N

(dγij
dt − (3)∇iNj − (3)∇jNi

)
.
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EARLY GENESIS STAGE

Let us give our construction in ADM formalism

A2(t,N) =
1
2 (−ct)

−2µ−2−δ · a2(N) ,

A3(t,N) =
1
2 (−ct)

−2µ−1−δ · a3(N) ,

A4(t) = −B4(t) = − 12 (−ct)
−2µ .

Circumvent the No-Go theorem:

2µ > 1+ δ > 1.

Unitarity bounds in the asymptotic past

µ+
3
2δ < 1.
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LEADING ORDER SOLUTION

Leading order solution

H =
h0

(−ct)1+δ ,

a = ag
(
1+ h0

cδ(−ct)δ
)
, t→ −∞,

where

h0 ≡
1
4N0

(
− N0a2(N0)
c+ cδ + 2cµ + a3(N0)

)
,

a2(N0) + N0 ·
d
dNa2(N)

∣∣∣
N=N0

= 0.
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STABILITY

The stability requirements reads as follows

GS > 0, FS > 0, GT > 0, FT > 0.

In addition, we also require the absence of superluminal propagation

uS < 1,

where

GS =
4(−ct)δ−2µ

(
2a′2(1)) + a′′2 (1)

)(
4h0 + a′3(1)

)2 ,

FS =
4(−ct)δ−2µc(1+ δ − 2µ)

4h0 + a′3(1)
,

GT = FT = (−ct)−2µ.
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WHAT IS HAPPENING IN EINSTEIN FRAME?

gEµν = Ω · gµν ,

NE =
√
Ω · N ,

aE =
√
Ω · a ,

where we choose
Ω(ϕ) ≡ 2G4(ϕ)

M2
Pl

.

Therefore, we have the Modified Genesis:

aE ∝ (−tc)−
µ

1−µ , µ < 1 (No strong-coupling),

HE = µ

1− µ
(−tc)−1 ,

ḢE = µ

1− µ
· 1
|tc|2

.
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HOW TO DESIGN THE COMPLETE SCENARIO?

• We want to have a kination epoch in the future t→ +∞, so

A2 =
1

3t2N2 , A3 = 0, A4 = − 12 .

The Lagrangian above is corresponds to the massless scalar field

L = X+ R
2 .

• In the past one has

A2 =
1
2 |c · t|

−2µ−2−δ
(−g
N2 +

g
3N4

)
, A3 = 0, A4 = − 12 |c · t|

−2µ .

• Smoothly connect two stages. The most tricky part is to ensure
the stability during transition phase...
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THE COMPLETE SCENARIO

A2 =
1
2 f

−2µ−2−δ
(
− g
N2 +

g
3N4

)
· (1− U) + U

3N2
( 2f
c + t

)2 ,
A3 = 0 ,

A4 = − 12 f
−2µ ,

where

U(t) = est
1+ est ,

f(t) = c
2

(
− t+ ln[2cosh(st)]

s

)
+ 1 .
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THE NUMERICAL SOLUTION
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Figure 3: The Hubble parameter. The red dashed line is the Hubble
parameter for kination stage H = (3tNf)−1, Nf = N(t0), while the green
dashed line is the Hubble parameter for early Genesis stage
H = h0 · (−ct)−1−δ .
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STABILITY
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MODE EQUATION FOR SCALARS

ζ̈ + ζ̇ · θ
s

t + k⃗2 · Bs · ζ = 0,

where we introduce

As ≡ GSa3
N ,

θs ≡ t · Ȧ
s

As ,

Bs ≡ u2SN2
a2 .
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IF MODE FREEZES AT THE EARLY TIMES

As
g ≡

4(−ct)δ−2µ
(
2a′2(1)) + a′′2 (1)

)(
4h0 + a′3(1)

)2 · a3g ,

θsg ≡ t · Ȧ
s
0

As
0
= δ − 2µ < 0 ,

Bsg =
c
(
2µ− 1− δ

)(
a′3(1) + 4h0

)
a2g ·

(
a′′2 (1) + 2a′2(1)

) > 0 .
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NORMALIZATION

We introduce the canonically normalized field ψ via

ζ ≡ ψ(
2As

g
)1/2 ,

so that the quadratic action is given by

S(2)
ψψ =

∫
d3xdt

[
1
2 ψ̇

2 −
Bsg
2
(
∇⃗ψ

)2
+ O

(
t−2)

]
.

The negative-frequency normalized solution is

ψ−∞ =
1

(2π)3/2
1√
2ω

· e−i
∫
ωdt , ω ≡

√
k⃗2Bsg.
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THE SCALAR SPECTRUM

ζ =
(|⃗k|

√
Bsg)−νs

23π
√
Asg

·
(
− t

√
Bsg |⃗k|

)νs · H1,2νs (− t
√

Bsg |⃗k|
)
,

ns = 3+ θsg = 3− 2µ+ δ ,

Aζ =
Γ2(νs)(Bsg)−νsk3−2νs∗

24−2νsπ3Asg
.

where
νs ≡

1− θsg
2 = µ+

1
2 − δ

2 .
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THE TENSOR SPECTRUM

AT
g =

(−ct)−2µ
8 · a3g , Bsg =

1
a2g

> 0,

θTg = t ·
Ȧs
g

As
g
= −2µ < 0 .

nT = 2+ θTg = 2− 2µ ,

AT =
2Γ2(νT)(BTg)−νTk3−2νT∗

24−2νTπ3ATg
,

where

νT ≡
1− θTg
2 = µ+

1
2 .
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TENSION BETWEEN UNITARITY BOUNDS AND RED-TILTED SPECTRUM
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-0.1

0.0

0.1

0.2

0.3

μ

δ

Figure 4: The range of parameters (µ, δ). The blue area corresponds to
unitarity and No-Go constraints, while the green area corresponds to the
condition ns < 1. 28



DO WE BELIEVE IN SPECTRUM CALCULATIONS?

Not for every model parameters...

µ = 7/10, δ = 1/10, c = 10−4, g =
1
77 · 10

−4, s = 10−4.

Figure 5: The θs(u) in the vicinity of freeze point. The magenta line is u
(
tfr
)
,

while the green line is u
(
tfr0
)
. 29



WHAT IS GOING ON?

The Hubble parameter is

H =
h(u)

N(u) · (−c · t)1+δ , u = (−c · t)−δ, δ > 0 ,

where

h(u) = g
6c(δ + 2µ+ 1) −

ug2(5δ + 8µ+ 4)
72c3(δ + 2µ+ 1)3(2δ + 2µ+ 1) + O(u2) .

The corrections by u variable are negligible if

|t| ≪ tnl =
1
c

(
g

c2M2
Pl

)1/δ
,
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FULL NON-LINEAR SCALAR SPECTRAL TILT

We roughly checked all parameter space (2 · 104 points) and still no
red-tilted spectrum!
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Figure 6: Numerical results of spectral tilt ns in µ− δ plane, which are shown
as level curves. Each panels assumes different g values, which are shown in
the upper right corners. c = s = 10−4 is common for all panels.
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UNITARITY BOUNDS FOR THE NON POWER–LAW BACKGROUNDS

Eclass = max
{
H, ḢH ,

ϕ̇

ϕ

}
∝ 1

|t| .

We consider the regime, when Estrong ≫ Escatter ≫ Eclassical > H.

S(2)
ζζ =

∫
dtd3xNa3

[
GS
N2

(
∂ζ

∂t

)2
− FS
a2

(
∇⃗ζ

)2]

Canonical normalizations

ζc ∝
√
GSζ , ĠS/GS ≪ Escatter .

The dispersion relation
w2 = u2s |⃗k|2 .
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CUBIC LAGRANGIAN

The most strict bounds arises from cubic scalar action for
perturbations Ageeva’2018, Ageeva’2020.

The Cubic Lagrangian

S(3)1 ≡
∫
Ndta3d3x

[
Λ2(ζ̇

2/N2)ζ +
(
a−2

)
Λ4(ζ̇/N)ζ∂2ζ+

(
a−2

)
Λ5(ζ̇/N) (∂iζ)2 + . . .

]
.

The most restrictive terms are: Λ1, Λ3, Λ7, Λ10, Λ14, Λ16 . After the
canonical normalization

S(3)0 =

∫
dt̃d3x̃

[
Λ1

ζ ′3c

G3/2S

+ Λ3
ζ ′2c

G3/2S

∂̃2ζc + Λ7
ζ ′c

G3/2S

(
∂̃2ζc

)2
+ . . .

]
.
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OPTICAL THEOREM

We consider two to two scattering. The PWA are

al ∝
∫
d(cosx)Pl(cosx)M .

The optical theorem is follows from unitarity of S - matrix and it is

Im al = |al|2 .

Then, bounds are ∣∣Re al∣∣ < 1
2 .

34



ESTIMATING THE BOUNDS

One defines
E ≡ E

N .

Omitting all numerical factors, one arrives to

|M(Estrong)| ∝ u3s < 1⇒ Estrong = . . . .

The u3s factor is arises from non-trivial dispersion relation.

• The unitarity bound is saturated when the absolute the tree
matrix element is roughly equal to unity.

• If one wants to obtain exact unitarity bound (at tree level), one
needs to calculate the s,u, t – channels for tree level 2→ 2
matrix element, then go to PWAs and use the optical theorem.
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THE RESULTS

Figure 7: The blue line is θs(u). The orange line is − log10
( Estrong
Eclassical

)
. The

magenta line is u
(
tfr
)
.
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ADDITIONAL CHECK

The calculation of two to two scattering is valid only if the
coefficients in vertexes Λi are changing slowly in comparison with the
characteristic time scale tscatter of the scattering (Escatter ≫ Eclass):

Figure 8: The magenta line is u
(
tfr
)
. The Λ7 is one of the most restrictive

terms!
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THE SPECTATOR FIELD

1. It is nearly impossible to obtain the red-tilted spectrum!
2. The resolution of this problem is quite straightforward – the
introduction of the spectator field.

3. Let us introduced the spectator in the spirit of
Creminelli’2010,Libanov’2016 Tahara’2020fmn, i.e. in the way
when the spectator field is invariant under the scaling
transformation.
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SCALING TRANSFORMATION

For µ = 1 and δ = 0 the Jordan frame Lagrangian is invariant under
the scale symmetry (global conformal symmetry):

ϕ̃ = ϕ− lnλ ,

g̃µν = λ2gµν .

Thus, the spectator field is

Sσ =

∫
dtd3x

√
−ge2ϕ

(
− 12 (∂σ)

2
)
.
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FAKE DE SITTER

• The effective scale factor is

aeff = eϕ · a.

• By adding the potential terms one can tilt the power spectrum
in either way!

• The conversion of fluctuations σ into adiabatic modes could
happen through the one of the mechanisms from Lyth’2001,
Dvali’2003, Dvali’2003.

• The model suggests a natural way to deform, which changes the
amplitude of tensor perturbations and gives us an easy
opportunity to obtain a subsequent small value for the r – ratio!
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RESULTS I

• We have found the minimum setup in the framework of
Horndeski gravity that could describe non-singular cosmology.

• In this setup, we build the Genesis scenario.
• We show that the background solution is stable during the
whole evolution, and the speed of scalar perturbations does not
exceed the speed of light.

• While the speed of the tensor perturbation stays equal to unity.
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RESULTS II

• In our model, there exists two distinct regimes (power-law
behavior and non-power law).

• We have implicitly shown that our first solution does not breaks
unitarity at early times.

• Despite the highly non power-law behavior, there exist
parameters for which the background solution stays out of the
strong-coupling regime.
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RESULTS III

• It is impossible to have a red scalar spectrum and maintain
unitarity both for power– and non power– law regimes!

• We came up with the spectator field mechanism⇒ Allows us to
produced red-tilted scalar spectrum!

• We suggested a deformation of the model⇒ give an
opportunity to achieve small r – ratio!
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THE END

Thank you for your attention!
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NO-GO THEOREM

Coefficients FS,GS,FT,GT are given by:

FT = 2G4 + ..., GT = 2G4 + ...,

and
FS =

1
a
d
dt

( a
Θ
G2T

)
−FT, GS =

Σ

Θ2G
2
T + 3GT,

where Σ and Θ are some cumbersome expression of G2, G3, G4 and H.
Stability conditions are:

GT ≥ FT > 0, GS ≥ FS > 0.

Denote ξ = aG2T/Θ, we rewrite FS as

FS =
1
a
dξ
dt −FT →

dξ
dt > aFT > 0
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MODEL DEFORMATION

Ã2 =
g1
2 f

−2µ−2−δ
(
− g
N2 +

g
3N4

)
· (1− U) + U

3N2
( 2f
c + t

)2 ,
Ã3 = 0 ,

Ã4 = −g12

(
f− 1+ g

1
2µ
1

)−2µ
, f− 1+ g

1
2µ
1 > 0 ,g1 > 0 .
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NO-GO THEOREM

dξ
dt > aFT > 0, ξ = aG2T/Θ,

Here |Θ| <∞ everywhere and it is smooth function of time (as it is
function of ϕ and H), so ξ can never vanish (except a = 0)→ thus we
demand non-singular model. Integrating from some ti to tf, we
obtain:

ξ(tf)− ξ(ti) >
∫ tf

ti
a(t)FTdt,

where a > const > 0 for t→ −∞ and it is increasing with t→ +∞.
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NO-GO THEOREM

ξ(tf)− ξ(ti) >
∫ tf

ti
a(t)FTdt,

• Let ξi < 0, so

−ξf < |ξi| −
∫ tf

ti
aFTdt,

where RHS→ negative with tf → +∞. So therefore ξf > 0. And it
means that ξ = 0 at some moment of time - singularity! So we
should demand ξ > 0 for all times.

• But on the other had, again just rewritting:

−ξi > −ξf +
∫ tf

ti
aFTdt,

and now RHS→ positive with ti → −∞ and ξi must be negative.
Again contradiction...

48



NO-GO THEOREM

Thus we have two important features here:
1.ξ ̸= 0,

2.dξ/dt > aFT > 0.

ξ(tf)− ξ(ti) >
∫ tf

ti
a(t)FTdt, 49



ADM AND COVARIANT

G2 =A2 − 2XFϕ,
G3 =− 2XFX − F,
G4 =B4,

where F(ϕ, X) is an auxiliary function, such that

FX = − A3
(2X)3/2

− B4ϕ
X ,

with
N−1dϕ/dt =

√
2X.

EoMs are

(NA2)N + 3NA3NH+ 6N2(N−1A4)NH2 = 0,
A2 − 6A4H2 − 1

N
d
d̂t (A3 + 4A4H) = 0 .
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JORDAN FRAME COVARIANT LAGRANGIAN FOR EARLY STAGE

G2 =
gX

(
−3c2e2ϕ + 2X

)
eϕ(δ+2µ−2)

3c4 + 4µ2Xe2µϕ ln
(
X
X0

)
,

G3 = µe2µϕ
(
ln

(
X
X0

)
+ 2

)
,

G4 =
1
2e

2µϕ .
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THE INITIAL SINGULARITY

• Geodesic incompleteness for gravitons. Creminelli’16.
• This can be understood by moving to the Einstein frame.

Does we solve the initial singularity problem?!

• The transformation between frames is singular at minus infinity!
• The geodesic (in)completeness should be generalizes
Rubakov’22!

• The physical time based on counting the oscillations of photons
wave functions Wetterich:2024.
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