Updates on ALMA

Jongsoo Kim Korea Astronomy and Space Science Institute

- Atacama
- Large Millimeter/ Submimllimter Array
- 12m array: 50 x
 12m antennas
- ACA array: 12 x
 7m antennas + 4
 x 12m antenna
- Longest distance between two antennas: 16 km

The ALMA Site

Angular resolutions of different telescopes

AGREEMENT

CONCERNING THE

OPERATIONS AND DEVELOPMENT OF THE

ATACAMA LARGE

MILLIMETER/SUBMILLIMETER ARRAY

(ALMA)

BETWEEN

THE NATIONAL INSTITUTES OF NATURAL SCIENCES of

JAPAN

AND

THE KOREA ASTRONOMY AND SPACE SCIENCE INSTITUTE

Ju100

Katsuhiko Sato, President National Institute of Natural Sciences

August

Date

KAST Daejon Place

Inwoo Han, President Korea Astronomy and Space Science Institute

aejeon

MoA for ALMA in Aug '14

ALMA proposal statistics

- 27 submitted (1.5% of total), 7 accepted (5 A+B, 2 C), 1 DDT
- Accepted time Main array: 82.6h, ACA: 45.1h, TP: 12.9h
- C.f. total 1712 proposal, MA:31744h, ACA:13018h, TP: 8929h, Subscription: EA 6.2, all 7.4)

EA ALMA Science workshops organized by Korea

2014 Jul

2021 Feb

비상전문덕 무선 언터넷

강지현

🔏 Aran

우리

Jongsoo Kim

이시은

Pressional 박승권 감지 같이 것

Band 7- Lano

ALMA proposal preparation workshop

• January 13-17, 2025 (5 days) The ACA Spectrometer installed at AOS in Feb 2022

Q0 comp rack 20:30 CLST Tue 22nd Mar 2022 / 08:30 JST Wed 23nd Mar 2022

Q2 comp rack

Q3 comp rack

All-Hands Meeting

"Fad 2 22 \$ 86 GHz SiO (v=1,J=2-1) uid A002 Xf59d27 X42 Power Spectra help this AC SPW=5 Pol-X AC SPW=7 Pol-X AC SPW=1 Pol-X AC SPVI-3 Pol-X Orion Peak = 117.8 dB at 86.26 GHz Peak = 117.7 dB at 86.26 GHz Peak = 117.9 dB at 86.26 GHz Peak = 118.5 dB at 85.26 GHz 5 03 364 3 2022-02-22 118.5 118.5 118.5 118 ddro 4 110.0 118.0 118.0 118.0 7-5 117.5 117.5 117.5 117.5 2 117.0 117.0 117.0 117.0 Q. 0 Ŵ 0 0 116.5 116.5 116.5 118.5 CANS 0.0 0 115.0 116.0 116.0 116.0 5 115.5 215.5 115.5 115.5 115.0 115.0 115.0 115.0 AC SPW=5 PoFY AC SPW-7 Pol-Y AC SPW=1 Pol Y AC SPW=3 Pol-Y atari Peak = 117.4 dB at 86.26 GHz Peak = 117.5 dB at 86.26 GHz Peak = 118.5 dB at 86.26 GHz Peak = 118.2 dB at 86.26 GHz 114.5 118.5 118.5 116.5 8 3 110.0 118.0 118.0 118.0 Janoby 117.5 117.5 117.5 117.5 117.0 117.0 117.0 117.0 116.5 115.5 116.5 116.5 ŝ 116.0 116.0 116.0 116.0 Median 115.5 115.5 115.5 115.5 115.0 115.0 115.0 Consolidhurs 115.0 on ray 40280 c120.0200.0180.0160.0140.0120.010 × +8.624e1 0.0240.0220.0200.0180.0160.0140.0120.014 +8.624e1 0.0240 0220.020 0 0150.0160.0140.0120.010 +8.624e1 0.0240.0220.0200.0100.0160.0140.0120.010 +8.624e1 Frequency [GHz] atherem + 1 = D X Courto Saldias 152 石井 Ishii Shun

ALMA Cycle 10: Record-Breaking Observation Hours

- 12-m: 4250 hours
- 7-m Array: 3769 hours
- Total Power Array: 2723 hours

ALMA Development Roadmap 2030

ORIGINS OF GALAXIES

Trace the cosmic evolution of key elements from the first galaxies (z>10) through the peak of star formation (z=2-4) by detecting their cooling lines, both atomic ([CII], [OIII]) and molecular (CO), and dust continuum, at a rate of 1-2 galaxies per hour.

ORIGINS OF CHEMICAL COMPLEXITY

Trace the evolution from simple to complex organic molecules through the process of star and planet formation down to solar system scales (~10-100 au) by performing full-band frequency scans at a rate of 2-4 protostars per day.

ORIGINS OF PLANETS

Image protoplanetary disks in nearby (150 pc) star formation regions to resolve the Earth forming zone (~ 1 au) in the dust continuum at wavelengths shorter than 1mm, enabling detection of the tidal gaps and inner holes created by planets undergoing formation.

ALMA2030 Wideband Sensitivity Upgrade

Band 6v2 (IF=4~18 GHz) science setup

From ATAC DD document

Comparision between ACAS and TPGS

Requirements			Improvement
	ACAS	TPGS	factor
Maximum Correlated Bandwidth	8 GHz per pol	32 GHz per pol	4
(Max CBW)			
Maximum # of spectral windows	4 x 4	160	10
# of channels (per pol) dual pol	4 x 4096	160 x 14880	145
# of channels (per pol) full pol	4 x 2048		291
Channel width at Max CBW dual pol	488 kHz	13.5 kHz	36
Channel width at Max CBW full pol	976 kHz		72
Finest channel width dual pol	15.25 kHz	13.5 kHz / 16	18
Finest channel width full pol	30.5 kHz		36

GPU technology developments

• Upgrade of PCIe Standard

- PCIe Gen 5 (Hopper): Supports up to 400 GE
- PCIE Gen 6 (Blackwell): Supports up to 800 GE
- GPU-centric approach, DOCA GPUNetIO
 - GPUDirect async kernel-initiated network (GDAKIN) communications to allow a CUDA kernel to directly control the NIC
- Wider Bandwidth Connections
 - NVLink C2C: Provides 900 GB/s bandwidth, which is 7 times greater than PCIe Gen 5.
 - NVLink (GPU-to-GPU): Achieves 1.8 TB/s bandwidth, critical for improving cross-correlation performance.
- Perfomrance improvement
 - Grace Hopper 200 NVL2: 134 TFLOPS for FP32 computations
 - Grace Blackwell 200 NVL2: 180 TFLOPS for FP32 computations

Current and Past members of the Korean ALMA projects

SNU

Sejong Univ

CNU

India

MPIfRA

