

Search for new physics signal in rare decays of heavy baryon

Cai-Dian Lü / IHEP, Beijing

L.Y. Li, C.D. Lu, J. Wang and Y.B. Wei, Phys. Rev. D109 (2024) no.11, 116012;

Y. Zheng, J.N. Ding, D.H. Li, L.Y. Li, C.D. Lü and F.S. Yu, Chin. Phys. C48 (2024) no.8, 083109.

Lucd

Outline

- Motivation / new physics intro.
- Hadronic calculation / QCD factorization
- $\Lambda_b \to K(\pi)l$ decays
- Invisible / semi-invisible decays of Λ_b
- Summary

Motivation

Sakharov: C and CP violation, the baryon number violation are needed to explain the matter-antimatter asymmetry in the Universe.

Experimentally, baryon number violation couplings are searched

$$p
ightarrow e^+ \pi^0$$
: Super Kamiokande, proton lifetime $au > 8.2 imes 10^{33} \, {
m y}$

$$p o K^+ \overline{
u}$$
: Juno exp., proton lifetime $au > 5.9 imes 10^{33}$ 年

$$D^0 \rightarrow pe^-$$
: BESIII col, Br $(D^0 \rightarrow pe^-) < 2.2 \times 10^{-6}$

$$B^0 \rightarrow \Lambda e^-$$
: BaBar col, Br $(D^0 \rightarrow pe^-) < 1.2 \times 10^{-8}$

$$B
ightarrow p \mu^-$$
: LHCb col , Br $(B
ightarrow p \mu^-) < 2.6 imes 10^{-9}$

$$\Lambda_b \to K^+ \mu^-$$
: LHCb col, $\operatorname{Br}(\Lambda_b \to K^+ \mu^-) < 1.95 \times 10^{-9}$

 $B^+ \rightarrow \psi_D p$: BaBar col, Br $(B^+ \rightarrow \psi_D p) < 10^{-7} \sim 10^{-5}$

Accelerator exp.

SU(5) grand unification, Supersymmetry, B-Mesogenesis....

Proton decay $p \rightarrow e^+ \pi^0$ Lagrangian:

$$\mathcal{L}_{i}^{\text{GUT}} = \frac{1}{\sqrt{2}} g X_{i,\mu}^{-} \left(-\bar{d}_{i,R} \gamma^{\mu} e_{R}^{+} + \epsilon_{ijk} \bar{u}_{k,L}^{c} \gamma^{\mu} u_{j,L} + \bar{d}_{i,L} \gamma^{\mu} e_{L}^{+} \right) + \frac{1}{\sqrt{2}} g Y_{i,\mu}^{-} \left(-\bar{d}_{i,R} \gamma^{\mu} \nu_{e,R}^{c} + \epsilon_{ijk} \bar{u}_{k,L}^{c} \gamma^{\mu} d_{j,L} + \bar{u}_{i,L} \gamma^{\mu} e_{L}^{+} \right) + h.c.$$

Feynman diagrams of $p
ightarrow e^+ \pi^0$

Spectator emission

SU(5) grand unification, Supersymmetry, B-Mesogenesis....

Proton decay $p \rightarrow e^+ \pi^0$ Lagrangian:

$$\mathcal{L}_{i}^{\text{GUT}} = \frac{1}{\sqrt{2}} g X_{i,\mu}^{-} \left(-\bar{d}_{i,R} \gamma^{\mu} e_{R}^{+} + \epsilon_{ijk} \bar{u}_{k,L}^{c} \gamma^{\mu} u_{j,L} + \bar{d}_{i,L} \gamma^{\mu} e_{L}^{+} \right) + \frac{1}{\sqrt{2}} g Y_{i,\mu}^{-} \left(-\bar{d}_{i,R} \gamma^{\mu} \nu_{e,R}^{c} + \epsilon_{ijk} \bar{u}_{k,L}^{c} \gamma^{\mu} d_{j,L} + \bar{u}_{i,L} \gamma^{\mu} e_{L}^{+} \right) + h.c.$$

Feynman diagrams of $\Lambda_b \to K(\pi)l$

Spectator emission

Model independent Leptoquark operators

Effective Hamiltonian at m_b scale after integration of new

physics

 $O_{1} = \epsilon^{ijk} (\bar{d}_{j}^{c} \Gamma b_{i}) (\bar{\ell} \Gamma s_{k}),$ $O_{3} = \epsilon^{ijk} (\bar{d}_{i}^{c} \Gamma s_{j}) (\bar{\ell} \Gamma b_{k}),$ $O_{5} = \epsilon^{ijk} (\bar{d}_{i}^{c} \Gamma d_{j}) (\bar{\ell} \Gamma b_{k}),$ $O_{7} = \epsilon^{ijk} (\bar{u}_{j}^{c} \Gamma u_{i}) (\bar{b}_{k}^{c} \Gamma \ell),$

$$\mathcal{H}_{new} = \sum_{\alpha=1}^{7} G_{new,\alpha} O_{\alpha},$$

where

$$\Gamma = \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \sigma_{\mu\nu}\},\$$

$$O_{2} = \epsilon^{ijk} (\bar{s}_{i}^{c} \Gamma b_{j}) (\bar{\ell} \Gamma d_{k}),$$

$$O_{4} = \epsilon^{ijk} (\bar{d}_{i}^{c} \Gamma b_{j}) (\bar{\ell} \Gamma d_{k}),$$

$$O_{6} = \epsilon^{ijk} (\bar{u}_{i}^{c} \Gamma b_{j}) (\bar{u}_{k}^{c} \Gamma \ell),$$

6

Model independent Leptoquark operators

Effective Hamiltonian at m_b scale after integration of new

physics

 $O_{1} = \epsilon^{ijk} (\bar{d}_{j}^{c} \Gamma b_{i}) (\bar{\ell} \Gamma s_{k}),$ $O_{3} = \epsilon^{ijk} (\bar{d}_{i}^{c} \Gamma s_{j}) (\bar{\ell} \Gamma b_{k}),$ $O_{5} = \epsilon^{ijk} (\bar{d}_{i}^{c} \Gamma d_{j}) (\bar{\ell} \Gamma b_{k}),$ $O_{7} = \epsilon^{ijk} (\bar{u}_{j}^{c} \Gamma u_{i}) (\bar{b}_{k}^{c} \Gamma \ell),$ $\mathcal{H}_{new} = \sum_{i}^{7} G_{new,\alpha} O_{\alpha},$

 $\alpha = 1$

$$O_{2} = \epsilon^{ijk} (\bar{s}_{i}^{c} \Gamma b_{j}) (\bar{\ell} \Gamma d_{k}),$$

$$O_{4} = \epsilon^{ijk} (\bar{d}_{i}^{c} \Gamma b_{j}) (\bar{\ell} \Gamma d_{k}),$$

$$O_{6} = \epsilon^{ijk} (\bar{u}_{i}^{c} \Gamma b_{j}) (\bar{u}_{k}^{c} \Gamma \ell),$$

$$\Delta(B-L) = 2$$

$$\Lambda_b \to K^+ l^-: \quad 0_1 \sim 0_3$$

$$\Lambda_b \to \pi^+ l^-: \quad 0_4 \sim 0_5$$

Leptoquark operators of $\Lambda_b \rightarrow P l$, $P = \pi$, K decay

 $\Delta(B-L) = 0 \quad (GUT)$ $\Lambda_b \to \pi^- l^+ : \ 0_6 \sim 0_7$

b decays: The multi-scale problem

NP scale	EW scale	Heavy quark scale	Intermediate scale	Hadronization scale
TeV or beyond	m_W	$m_b(m_c)$	$\sqrt{m_b \Lambda}, m_c$	Λ
L _{NP}	\mathcal{L}_{SM}^{+} $\mathcal{L}_{D>4}^{-}$	$\frac{\sum_{i} C_{i} O_{i}}{\sum_{i} C'_{i} O'_{i}}$	SCET-I	Low energy QCD HQET,
	⟨ƒ <i>H</i>	$\widehat{C}_{eff} B\rangle = \mathcal{A}_{\mathrm{F}} +$	$-\mathbf{O}\left(\frac{\Lambda}{m_{h}}, \alpha_{s}\right)$	SCET-II

- Perturbation: matching, resummation, evolution
- Nonperturbation: Lattice simulation, sum rules...

Hadronic Form factor definition of Leptoquark operators O_{α}

$$\Delta(\mathbf{B}-\mathbf{L})=2: \quad \langle P^+(p)|O_{\alpha}|\Lambda_b(p_{\Lambda_b})\rangle = [A^+ + B^+ \not p + C^+ \not q] u_{\Lambda_b}(p_{\Lambda_b}), \qquad \alpha = 1 \sim 5,$$

$$\Delta(\mathbf{B}-\mathbf{L})=0: \quad \langle P^{-}(p)|O_{\alpha}|\Lambda_{b}(p_{\Lambda_{b}})\rangle = u_{\Lambda_{b}}^{T}(p_{\Lambda_{b}}) C \left[A^{-}+B^{-}\not p + C^{-}\not q\right], \qquad \alpha = 6 \sim 7.$$

A term can be expressed as combination of B and C terms

$$p_{\Lambda_b} u_{\Lambda_b}(p_{\Lambda_b}) = (p + q) u_{\Lambda_b}(p_{\Lambda_b}) = m_{\Lambda_b} u_{\Lambda_b}(p_{\Lambda_b})$$

$$A^{\pm}u_{\Lambda_b}(p_{\Lambda_b}) = \frac{A^{\pm}}{m_{\Lambda_b}} p_{\Lambda_b} u_{\Lambda_b}(p_{\Lambda_b}) = \frac{A^{\pm}}{m_{\Lambda_b}} (p + q) u_{\Lambda_b}(p_{\Lambda_b})$$

Form factors at leading order

Equation of $\not q u_\ell(q) = 0$ motion

At leading order, there is only one Lorentz structure contributing to $\Lambda_b \to Pl$ decay

$$\langle P^+(p)\ell^-(q)|O_{\alpha}|\Lambda_b(p_{\Lambda_b})\rangle \sim \zeta_{\Lambda_b \to P^+} \bar{u}_{\ell}(q) \frac{\not h}{2} u_{\Lambda_b}|(p_{\Lambda_b}), \qquad \alpha = 1 \sim 5,$$

$$\langle P^-(p)\ell^+(q)|O_{\alpha}|\Lambda_b(p_{\Lambda_b})\rangle \sim \zeta_{\Lambda_b \to P^-} u_{\Lambda_b}^T(p_{\Lambda_b}) C \frac{\not h}{2} v_{\ell}(q), \qquad \alpha = 6 \sim 7,$$

Leading-twist wave function of Λ_b^- baryon:

$$\begin{aligned} \langle 0 | [u_i(t_1n)]_A [0, t_1n] [d_j(t_2n)]_B [0, t_2n] [h_{v,k}(0)]_C |\Lambda_b(v)\rangle \\ = & \frac{\epsilon_{ijk}}{4N_c!} f_{\Lambda_b}^{(2)}(\mu) [u_{\Lambda_b}(v)]_C \left[\frac{\not n}{2} \gamma_5 C^T\right]_{BA} \int_0^\infty d\omega \, \omega \int_0^1 dy \, e^{-i\omega(t_1y+it_2\bar{y})} \, \psi_2(y,\omega) \end{aligned}$$

Hadron wave function

LCDA of Λ_b baryon: Exponential model

$$\psi_2(y,\omega) = y(1-y)\omega^2 \frac{1}{\omega_0^4} e^{-\omega/\omega_0}$$

Leading-twist wave function of pseudo-scalar meson

$$\langle P(p) | [\bar{q}(t\bar{n})]_A [t\bar{n}, 0] [q(0)]_B | 0 \rangle = \frac{if_P}{4} \,\bar{n} \cdot p \left[\frac{n}{2} \gamma_5 \right]_{BA} \int_0^1 dx \, e^{ixt\bar{n} \cdot p} \, \phi_P(x, \mu),$$

LCDA of pseudo-scalar meson $P = \pi$, K:

$$\phi_P(x,\mu) = 6 x \,\bar{x} \,\bigg[1 + \sum_{n=1}^{\infty} a_n^P(\mu) \, C_n^{(3/2)}(2x-1) \,\bigg].$$

Form factors calculated in QCD factorization

$$\zeta^a_{\Lambda_b \to P^{\pm}} = f_P f^{(2)}_{\Lambda_b} \int_0^1 dx \int_0^\infty d\omega \,\omega \int_0^1 dy \, C^a_{\pm}(x, y, \omega, \mu) \mathcal{J}^a_{\pm}(x, y, \omega, \mu) \phi_P(x, \mu_0) \psi_2(y, \omega).$$

$$\text{Jet function:} \quad \mathcal{J}^a_+(x,y,\omega,\mu) = \frac{\pi \,\alpha_s(\mu) \,T^a_c}{4 \,\bar{n} \cdot p} \frac{1}{x \, y \, \omega^2}, \qquad \mathcal{J}^a_-(x,y,\omega,\mu) = \frac{\pi \,\alpha_s(\mu) \,T^a_c}{4 \,\bar{n} \cdot p} \frac{1}{x \, \bar{y} \, \omega^2},$$

SU(3) flavor symmetry at heavy quark limit:

$$\int_0^1 dy \,\mathcal{J}^a_+(x,y,\omega,\mu)\,\psi_2(y,\omega) \sim \int_0^1 dy \,\bar{y} \qquad \int_0^1 dy \,\mathcal{J}^a_-(x,y,\omega,\mu)\,\psi_2(y,\omega) \sim \int_0^1 dy \,y$$

There is only one independent form factor for $\Delta(B-L) = 0$ and $\Delta(B-L) = 2$ decays

$$\zeta^a_{\Lambda_b \to P} = \zeta^a_{\Lambda_b \to P^{\pm}}.$$

QCD factorization

di-quark behavior in baryon decay

Jet function at endpoint:

 $\mathcal{J}^a_+(x, y, \omega, \mu) \sim 1/(xy\omega^2)$ $\mathcal{J}^a_-(x, y, \omega, \mu) \sim 1/(x\bar{y}\omega^2)$

Endpoint behavior of pseudoscalar and baryon wave function:

 $\phi_P \stackrel{x \to 0}{\sim} x, \qquad \psi_2 \stackrel{y \to 0, \omega}{\sim}$

$$\overset{y \to 0, \omega \to 0}{\sim} y \omega^2$$

$$\psi_1, \qquad \psi_2 \overset{y \to 1, \omega \to 0}{\sim} \bar{y} \omega^2 \qquad \textbf{\textit{O}}_1,$$

No endpoint divergence in baryon decays

di – quark

Leading order QCD corrections to form factor

Decay amplitude of Feynman diagram (a)

$$\mathcal{A}^{a}_{\alpha}(\Lambda_{b} \to P^{+}\ell^{-}) = G_{new,\alpha} \,\zeta^{a}_{\Lambda_{b} \to P^{+}} \times \bar{u}_{\ell}(q) \,M^{a}_{\alpha} \,u_{\Lambda_{b}}(v), \qquad \alpha = 1 \sim 5,$$

$$\mathcal{A}^{a}_{\alpha}(\Lambda_{b} \to P^{-}\ell^{+}) = G_{new,\alpha} \,\zeta^{a}_{\Lambda_{b} \to P^{-}} \times u^{T}_{\Lambda_{b}}(v) \,M^{a}_{\alpha} \,v_{\ell}(q), \qquad \alpha = 6 \sim 7.$$

Definition of matrix

$$M_{1}^{a} = -M_{2}^{a} = -M_{4}^{a}/2 = -2\,\bar{n}\cdot p\,m_{\Lambda_{b}}^{1/2}\,\Gamma\,\frac{\not{n}}{2}\,\Gamma, \qquad M_{3}^{a} = M_{5}^{a} = 2\,\bar{n}\cdot p\,m_{\Lambda_{b}}^{1/2}\,\mathrm{Tr}\left\{\Gamma\,\frac{\not{n}}{2}\right\}\Gamma,$$
$$M_{6}^{a} = 4\,\bar{n}\cdot p\,m_{\Lambda_{b}}^{1/2}\,\Gamma^{T}\,C\,\frac{\not{n}}{2}\,\Gamma, \qquad M_{7}^{a} = 2\,\bar{n}\cdot p\,m_{\Lambda_{b}}^{1/2}\,\mathrm{Tr}\left\{\Gamma\,\frac{\not{n}}{2}\right\}C\,\Gamma,$$

 $diagram\,(b)\,and\,(c)\,are$ suppressed by order Λ_{QCD}/m_b comparing with diagram (a)

Form factor and decay rate

Parameter dependence of form factors

Decay rate as function of new physics parameters

$$\Gamma_{\alpha}^{V} = \frac{m_{\Lambda_{b}}^{\circ}}{\pi} |G_{new,\alpha} \zeta_{\Lambda_{b} \to K}|^{2}, \qquad \alpha = 1 \sim 2,$$

$$\Gamma_{\alpha}^{V} = \frac{4 m_{\Lambda_{b}}^{3}}{\pi} |G_{new,\alpha} \zeta_{\Lambda_{b} \to K}|^{2}, \qquad \alpha = 3,$$

$$\Gamma_{\alpha}^{V} = \frac{4 m_{\Lambda_{b}}^{3}}{\pi} |G_{new,\alpha} \zeta_{\Lambda_{b} \to \pi}|^{2}, \qquad \alpha = 4 \sim 7,$$

$$\alpha = 4 \sim 7,$$

$$\Gamma_{\alpha}^{S} = \Gamma_{\alpha}^{P} = \frac{1}{4} \Gamma_{\alpha}^{A} = \frac{m_{\Lambda_{b}}^{3}}{4 \pi} |G_{new,\alpha} \zeta_{\Lambda_{b} \to K}|^{2}, \qquad \alpha = 1 \sim 2,$$

$$\Gamma_{\alpha}^{S} = \Gamma_{\alpha}^{P} = \frac{1}{4} \Gamma_{\alpha}^{A} = \frac{m_{\Lambda_{b}}^{3}}{\pi} |G_{new,\alpha} \zeta_{\Lambda_{b} \to \pi}|^{2}, \qquad \alpha = 4, \ 6.$$
15

Input parameters

$$\begin{split} m_{\Lambda_b} &= 5.6196 \,\text{GeV} & \tau_{\Lambda_b} = 1.471 \,\text{ps} \\ \omega_0 &= 0.280 \,{}^{+0.047}_{-0.038} \,\text{GeV} & f^{(2)}_{\Lambda_b}(\mu_0) = 0.030 \pm 0.005 \,\text{GeV}^3 \\ f_\pi &= 0.1304 \pm 0.0002 \,\text{GeV} & f_K = 0.1562 \pm 0.0007 \,\text{GeV} \\ a^\pi_1(\mu_0) &= 0 & a^\pi_2(\mu_0) = 0.29 \pm 0.08 \\ a^K_1(\mu_0) &= -0.07 \pm 0.04 & a^K_2(\mu_0) = 0.24 \pm 0.08 \end{split}$$

Numerical results

Numerical results of $\Lambda_h \rightarrow P$ form factors:

 $\zeta_{\Lambda_b \to K} = 1.09 {}^{+0.36}_{-0.42} \times 10^{-3} \,\text{GeV},$ $\zeta_{\Lambda_b \to \pi} = 9.00 {}^{+2.92}_{-3.42} \times 10^{-4} \,\text{GeV}.$

Upper limit of *LHCb* exp. for $\Lambda_b \to K^+ \mu^-$:

$$[\mathcal{B}(\Lambda_b \to K^- \mu^+) + \mathcal{B}(\Lambda_b \to K^+ \mu^-)] \times \frac{3.1 \times 10^{-6}}{\mathcal{B}(\Lambda_b \to pK^-)}$$

<1.95 × 10⁻⁹ at CL = 90 %.

Constraint for new physics couplings from LHCb exp.

$ G_{new,\alpha} ^2 [{\rm GeV}^{-4}]$	$\Gamma = 1 \text{ or } \gamma_5$	$\Gamma = \gamma_{\mu}$	$\Gamma = \gamma_{\mu}\gamma_{5}$	$\Gamma = \sigma_{\mu\nu}$
$\alpha = 1, 2$	$< 5.2 \times 10^{-17}$	$<1.3\times10^{-17}$	$<1.3\times10^{-17}$	-
$\alpha = 3$	-	$< 3.2 \times 10^{-18}$	-	-

There are only vector current contributions from O_3 , O_5 and O_7 operator

Extend study to B-Mesogenesis model

B-Mesogenesis model was proposed to simultaneously explain the origins of DM and baryon asymmetry by assuming that dark matter is charged under baryon number

The visible baryon number is violated but the total baryon number is conserved.

dark fermion ψ with baryon number B = -1

$$O_{u_a d_b, d_c}^L = \epsilon_{ijk} \left(\bar{u}_{La}^{i,C} d_{Lb}^j \right) \left(\bar{\psi}^C d_{Rc}^k \right),$$
$$\bar{O}_{u_a d_b, d_c}^L = \epsilon_{ijk} \left(\bar{u}_{La}^i d_{Lb}^{j,C} \right) \left(\bar{\psi} d_{Rc}^{k,C} \right),$$

$$O_{u_a d_b, d_c}^R = \epsilon_{ijk} \left(\bar{u}_{Ra}^{i,C} d_{Rb}^j \right) \left(\bar{\psi}^C d_{Rc}^k \right),$$

$$\bar{O}_{u_a d_b, d_c}^R = \epsilon_{ijk} \left(\bar{u}_{Ra}^i d_{Rb}^{j,C} \right) \left(\bar{\psi} d_{Rc}^{k,C} \right).$$

Lucd

Extend study to B-Mesogenesis

Extend study to B-Mesogenesis

The same form factors calculated as semi-leptonic decay

Possible Constraints can be derived from future experiments

Radiative semi-invisible decay of $\Lambda_b \rightarrow \gamma \psi$

The decay amplitude is given as

$$\mathbf{i}\mathcal{M} = C_{ub,d}^L \bar{v}_{\psi}^C(q) P_R \left(\zeta_u^{\Lambda_b^0 \to \gamma} \frac{\mathbf{\vec{h}}}{2} \not \in \frac{\mathbf{\vec{h}}}{2} + \zeta_d^{\Lambda_b^0 \to \gamma} \frac{\mathbf{\vec{h}}}{2} \not \in \frac{\mathbf{\vec{h}}}{2} \right) u_{\Lambda_b}(p'),$$

The hadronic matrix elements can be parameterized in terms of two form factors: $\int (r^{A_{b} \rightarrow \gamma}(r^{2})) = P(r^{A_{b} \rightarrow \gamma}(r^{2})) = P(r^{A_{b} \rightarrow \gamma}(r^{2}))$

 $+\zeta_2^{\Lambda_b\to\gamma}(q^2)\frac{q}{m_{\Lambda_b}^2}\mathrm{i}\sigma^{\mu\nu}\bigg)u_{\Lambda_b}(p')\epsilon_{\mu}^*p_{\nu}'.$

In B-Mesogenesis model, the dark fermion ψ should decay into a dark Majorana fermion ξ and a dark scalar baryon φ

In this case, we can have Fully invisible decay for Λ_b , unfortunately this decay is difficult for exp. to identify.

Summary/Challenges

- Rich physics, b baryon decays, especially in the search for new physics signal
- Factorization works well in b baryon decays even in collinear factorization.
- Precision study needed in both experimental and theoretical researches

Thanks