
Chapter 9

Gauge Symmetries and BRST

In Chapter 3, we studied how Faddeev and Popov managed to convert an ill-defined

path integral with huge gauge redundancies to a well-defined one via their gauge-fixing

procedure. It was an elaborate way to mod out the infinite gauge volume. Along the

way, we encountered the notion of BRST action, named after Carlo Becchi, Alain

Rouet, Raymond Stora and Igor Tyutin, who realized how Faddeev-Popov’s action

can be recast with ghost fields and an auxiliary field, so that the gauge-fixed action

admits a new type of symmetry that inherits the gauge redundancy.

In this brief chapter, we shall go back to the notion of the gauge redundancy for

a rudimentary understanding how we handle such ambiguities in characterizing and

isolating physical states. We have gone through in Appendix A on how to institute

the gauge-invariance of physical states in the Hamiltonian view, but for most of this

volume we approach the quantum field theories via path integral where a Lorentz-

invariant approach would be more desirable. We are naturally led to the BRST

symmetry as their reincarnation after the gauge-fixing procedure. Gauge-fixing is

needed one way or another, and BRST offers a covariant way to handle the procedure

in a sweeping and manifestly covariant manner.

The BRST machinery we find here has broad generalizations to theories equipped

with other gauge principles, and is one of more beautiful story associated with gauged

systems. In next chapter, we will again resort to the BRST algebra discovered here

for a solution-generating technique known as the anomaly descent.
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9.1 Canonical Quantization in Brief

The canonical quantization of quantum mechanics finds immediate generalization to

scalar fields. The only new thing is that, instead of finite degrees of freedom q’s as

functions of time t, we start with scalar fields ϕ(t,x) as function of t and x. In a sense

we can consider it as an infinite-dimensional quantum mechanics with qx(t) = ϕ(t,x)

labeled by the spatial position. The most immediate prerequisite to the canonical

quantization is how we single out a time coordinate t along which a unitary evolution

via the Hamiltonian dictates the dynamics. How this does not spoil the relativistic

invariance has been established for the action which is Lorentz invariant.

We have already gone through much of quantum field theory exercises via the

Wick-rotated path integrals, so the canonical quantization here may sounds pretty

late. The main purpose of recalling this fundamental aspect of quantum field theory

is to glimpse into how classical quantities elevate to quantum ones, among which is

how the classical gauge redundancy elevates to quantum level. For this reason, the

content of this section will be limited to the most basic dictionaries.

Note how we do not really venture into spinor fields and gauge fields for which the

quantization machinaries would be in use if we proceed with the remaining chapters

in this canonical language. The rudimentary schemes for scalar already contain the

essential part of the story and can be elevated to these higher spin fields, as offered

by many standard texts. Our purpose here is merely to convince ourselves that such

exists; real computation would be instead via the path integral as we have done.

9.1.1 Canonical Quantization of a Real Scalar

We start with a single bosonic field and quantize a free massive scalar field, with the

action, ∫
d dx

1

2

(
−ηµν∂µϕ∂νϕ−m2ϕ2

)
. (9.1.1)

As we have seen earlier numerous times, a quantum field theory needs more than the

Lagrangian to define. Issues connected to the renormalization flow need to be dealt

with eventually. Before that, a more technical issue of how the continuous label x

comes with unbounded values can be often treated sensibly by replacing the infinite

space by a box of finite volume; this way we have at least traded off the continuous
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label x in favor of discrete labels, such as the quantized Fourier momenta. We can

then take the infinite volume limit, to go back to the original field theory.

For simplicity, we will take the space to be a cubic box of linear size L and impose

the periodic boundary condition on ϕ,

ϕ(t,xi) = ϕ(t,xi + Lδik) , k = 1, . . . , d− 1 (9.1.2)

The field equation,

ηµν∂µ∂νϕ = m2ϕ , (9.1.3)

is naturally solved by the following plane waves,

f±
p =

1

(2ωp)1/2L(d−1)/2
e∓iωpt+i2πp·x/L , ωp =

√
m2 + (2πp)2/L2 (9.1.4)

with p ∈ Zd−1. Note that we have (f−
−p)

∗ = f+
p .

The particular normalization is designed such that they are orthonormal with

respect to the following inner product, among Zd−1-many independent Fourier modes,

⟨⟨f+
p , f

+
q ⟩⟩ ≡

∫
dd−1x 2ωp (f

+
p )

∗f+
q = δp,q . (9.1.5)

Later, when we generalize to curved spacetime, it should become evident why this

choice with ωp factor in the integrand is inevitable. In turn, the completeness relation

with these Fourier modes is∑
p

2ωp (f
+
p (t,y))

∗f+
p (t,x) = δd−1(x− y) , (9.1.6)

or equivalently, ∑
p

2ωp f
−
−p(t,y) f

+
p (t,x) = δd−1(x− y) . (9.1.7)

The most general solution for ϕ takes the form,

ϕ(t,x) =
∑
p

ap f
+
p +

∑
p

a∗p
(
f+
p

)∗
(9.1.8)
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with complex coefficients ap and their conjugates a∗p to ensure the reality of ϕ.

The quantization proceeds from this, but with the canonical variables, as usual.

The conjugate momentum is

Π =
δ

δϕ̇

∫
L = ϕ̇ =

∑
p

−iωp ap f
+
p +

∑
p

iωp a
∗
p

(
f+
p

)∗
. (9.1.9)

The Poisson bracket is

[ϕ(t,x),Π(t,y)]P.B. = δd−1(x− y) , (9.1.10)

so the quantized version is

[ϕ(t,x),Π(t,y)] = iℏ δd−1(x− y) . (9.1.11)

now with the boldfaced symbols to emphasize that they are now considered operators.

One sees that the desired canonical commutator is achieved by demanding, after

elevating the coefficients a to operators a,

[ap , a
†
q] = ℏ δp,q , [ap , aq] = 0 = [a†

p , a
†
q] , (9.1.12)

where δp,q should be taken with a grain of salt; since the momenta p would become

continuous variables in the limit of L → ∞, δp,q is meant to represent the identity

operator in the p space, eventually. This reduces the above equal time commutator

to

[ϕ(t,x),Π(t,y)]

=
∑
p

∑
q

(
iωq[ap, a

†
q]f

+
p (t,x)f

−
−q(t,y)− iωq[a

†
p, aq]f

−
−p(t,x)f

+
q (t,y)

)
= iℏ δd−1(x− y) , (9.1.13)

as desired.

The universal factor of ℏ can be absorbed by normalizing the oscillator a’s as

ap →
√
ℏ ap , (9.1.14)
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so that

[ap , a
†
q] = δp,q . (9.1.15)

With this normalization, the Hamiltonian is

H =

∫
dd−1x

1

2

(
Π2 + (∂ϕ)2 +m2ϕ2

)
=

1

2

∑
p

(
ap a

†
p + a†

p ap

)
ℏωp , (9.1.16)

reducing the content of ϕ to an infinite number of harmonic oscillators, labeled by

p ∈ Zd−1, with the respective energy gaps ωp. The total space constructed from these

harmonic oscillators is called the Fock space.

Defining the number operator

Np = a†
p ap , (9.1.17)

the Hamiltonian can be also written as

H =
∑
p

(
a†
p ap +

1

2

)
ℏωp . (9.1.18)

Now that we reviewed the basics of the quantization procedure, we will often drop

ℏ by taking the unit where ℏ = 1 for simplicity in many middle computations. In

this unit, combined with c = 1, energy is measured in the unit of inverse length.

Reviving it is not too difficult as we merely need to keep track of such units. We

will periodically remind ourselves how ℏ enters the story by reviving ℏ at key places,

throughout the rest of the note.

As is familiar from quantum harmonic oscillators, the Fock space vacuum is an-

nihilated by all of ap’s,

ap|0⟩ = 0 (9.1.19)

the Hilbert space constructed via creation operators a†
p’s acting on this vacuum.

Accumulated action of such creation operators add a set of elementary particles of ϕ

field carrying such momenta, propagating in the form of a plane-wave. The quantum

field theory goes well beyond quantum mechanics in the sense that the number of

particles is not fixed, nor are the particle species unchangeable. The Hawking effect
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we explore in a later chapter is possible fundamentally because particles themselves

are derived concept, as the unit excitation of the quantum field in question.

9.1.2 Canonical Quantization in a Curved spacetime

This section came from another volume by the author on General Relativity with

materials on the Hawking radiation and related quantum effect, where we needed to

extend the canonical quantization in the curved spacetime as well. We include part of

the latter material here as well for the sake of completeness, as we discuss on and off

how curved geometry responds to quantum matter. Although the path integral offers

a natural language for such interplay between quantum matter and curved spacetime,

it is also important to recognize that the canonical quantization can also proceed in

such nontrivial background as we will be discussing how the effective action of chiral

matter fields would behave in such spacetimes.∗

Let us consider how one might repeat the above quantization procedure for a free

real scalar field, now in a curved spacetime. With the action∫
d dx
√
g
1

2

(
−gµν∂µϕ∂νϕ−m2ϕ2

)
, (9.1.20)

the equation of motion is modified by the geometry

∇2ϕ = m2ϕ . (9.1.21)

The Hamiltonian, or canonical, formulation needs a reasonably well-defined notion of

time, or a foliation. Let us be not too specific but call the time coordinate t and the

space-like hypersurfaces of constant t as Σt.

Since the field equation is linear, one should be able to construct the most general

solution via linear superposition,

ϕ =
∑
p

ap f
+
p +

∑
p

a∗p f
−
p , (9.1.22)

where we kept the same p as the labels, although these solutions are no longer the

∗For more immediate applications of the quantization scheme we outline to black holes and
cosmology, we refer the readers to “Gravitation: A Geometric Field Theory” a separate volume by
the author, although in a later chapter in this volume we will again visit the Hawking effect from a
path integral approach.
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simple plane waves on Rd but rather follow a generalized version of the Fourier analy-

sis. Nor are these solutions be generally countable, if we consider the infinite volume

of the typical spacetime we would encounter later; one should not take the discrete

labels p and the summation over them too literally, therefore. In actual applica-

tions, the summations would be replaced by integrals over appropriately generalized

Fourier modes. Fortunately, many of these detail will not affect our main aim of

understanding the quantum effect in the presence of relativistic horizons.

The first thing to ask is whether there is a sensible inner product among these

eigenmodes. Inspired by the flat case, we define the following inner product,

⟨⟨f̃ , f⟩⟩Σt = i

∫
Σt

dSµ
(
f̃ ∗(∇µf)− (∇µf̃

∗)f
)
, (9.1.23)

over a constant t hypersurface Σt. This inner product is invariant under the time

evolution since

⟨⟨f̃ , f⟩⟩Σt′ − ⟨⟨f̃ , f⟩⟩Σt = i

∫
Mt′t

d dx
√
g ∇µ

(
f̃ ∗(∇µf)− (∇µf̃

∗)f
)
= 0 (9.1.24)

thanks to the field equation, where ∂Mt′t = Σt′ − Σt. Actually this statement is

generally false since Mt′t can have boundary at spatial infinities, in principle, but the

idea here is that relevant physical states are wave-packets with localized profiles in

the end. These would obey some vanishing condition far away enough to allow us to

ignore such asymptotic boundaries at spatial infinities.

More generally, given a pair of hypersurfaces, Σ′ and Σ, we have

⟨⟨f̃ , f⟩⟩Σ′ − ⟨⟨f̃ , f⟩⟩Σ = i

∫
MΣ′Σ

d dx
√
g ∇µ

(
f̃ ∗(∇µf)− (∇µf̃

∗)f
)
= 0 (9.1.25)

as long as we can find MΣ′Σ whose boundary is Σ′ − Σ. As such, the inner product

itself does not depend on the choice of the time-coordinate t. As such, we will often

denote the inner product without the labels,

⟨⟨ · · · , · · · ⟩⟩ , (9.1.26)

which obeys

⟨⟨f̃ , f⟩⟩ = ⟨⟨f, f̃⟩⟩∗ = −⟨⟨f ∗, f̃ ∗⟩⟩ = −⟨⟨f̃ ∗, f ∗⟩⟩∗ . (9.1.27)
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under complex conjugations.

One can set up examples most analogous to those in the flat spacetime when the

metric is time-foliated and ∂t is a Killing vector field,

g = −N(x)2dt2 + hij(x)dx
idxj (9.1.28)

This metric allows a separation of variables to occur for the Fourier modes, with

ωp ≥ 0,

f+
p =

1√
2ωp

e−iωpt ψp(x) , f−
p =

1√
2ωp

e+iωpt ψ∗
p(x) (9.1.29)

with

− N√
h
∂i

(
N
√
hhij∂iψp

)
= ω2

p ψp (9.1.30)

The operator on the left is Hermitian under the natural pairing on each time slices,

so that the eigenfunctions obey the orthonormality,∫
Σt

1

N(x)
(ψq(x))

∗ψp(x) = δq,p (9.1.31)

with the induced metric h in Σt understood. The label p need not be discrete so the

expression δq,p should taken with a grain of salt, as in the flat spacetime case.

Given that the operator for the spatial eigenvalue problem is real, we may as well

choose ψp(x) themselves real, by taking linear combinations among eigenmodes with

the common eigenvalue ω2
p. This immediately allow us to say that

⟨⟨f+
q , f

+
p ⟩⟩ = δq,p ,

⟨⟨f−
q , f

−
p ⟩⟩ = −δq,p ,

⟨⟨f−
q , f

+
p ⟩⟩ = 0 = ⟨⟨f+

q , f
−
p ⟩⟩ . (9.1.32)

and

aq = ⟨⟨f+
q ,ϕ⟩⟩ , a†

q = −⟨⟨f−
q ,ϕ⟩⟩ . (9.1.33)
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The negative definite nature of this pairing between f−’s does not imply unphysical

states. It merely signals that f−
p ∼ eiωpt’s represent anti-particles.

The completeness relation that we need for the equal-time commutator is built

from the basis {ψp(x
i)} which obeys the usual orthonormality among these spatial

eigenmodes, (9.1.31) so is not affected by this extraneous sign. We recover the same

canonical commutator

[ap , a
†
q] = δp,q , [ap , aq] = 0 = [a†

p , a
†
q] , (9.1.34)

for the quantized operators, and the Hamiltonian,

H =
1

2

∑
p

(
ap a

†
p + a†

p ap

)
ℏωp =

∑
p

(
a†
p ap +

1

2

)
ℏωp , (9.1.35)

is conserved, as in the flat spacetime, thanks to the time translation invariance as-

sumed.

9.2 Gauss Constraints and Physical States

The treatment we gave for the scalar quantization would apply to free Maxwell theory

as well, although the important caveats due to the gauge redundancy would enter

nontrivially. For the latter, we need to keep in mind both how to perform the gauge

fixing but at the same time how to elevate the gauge redundancy to quantum level.

For the latter, a useful thing to do is to recall how the gauged system is handled in

the canonical formulation, which is the starting point of the canonical quantization.

Appendix A gave a quick overview of the constrained system, which ended with

the example of the classical Maxwell theory. Recall that the free theory, say, with

SMaxwell = −1

4

∫
d dx F̃ 2 (9.2.1)

is equipped with a pair of first-class constraints,

π0 ≈ 0 , ∂iπ
i ≈ 0 (9.2.2)
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where πµ are the conjugate momenta of Ãµ,

πµ ≡ δSMaxwell

δ(∂0Ãµ)
(9.2.3)

As explained there, ≈ means that these must hold on physical states and one should

not rush into using the constraints too early.

Some of related subtleties may be addressed most conveniently by working with

the total Hamiltonian

H =

∫
dd−1x

[
1

2

(
πiπi +BiBi

)
+ ϑ0π0 + (Ã0 + ϑ1)(−∂iπi)

]
(9.2.4)

with the Lagrange multiplier ϑ0 and ϑ1. The Lagrange multipliers of the first-class

constraints are not determined on-shell, while those of the second-class constraints

are, and play the role of the gauge functions. Time derivative of Ã0 acquires an

arbitrary term ∼ ϑ0 while that of Ãi is shifted by ∂iϑ1, due to these additional

arbitrary pieces. Regardless of suh a shift, which is a matter of convenience, A0 acts

like a Lagrange multiplier, imposing a secondary constraint,

−∂iπi ≈ 0 (9.2.5)

as we saw above. This is called the Gauss constraint.

After a harmless redefinition of ϑ0 = −∂0ϑ, we may as well shift ϑ1 → −ϑ, given
how Ã0 is also entirely arbitrary, so that,

H =

∫
dd−1x

[
1

2

(
π2 +B2

)
+ (−∂0ϑ)π0 + (Ã0 − ϑ)(−∂iπi)

]
(9.2.6)

The time evolution under H accumulates, in addition to the physical evolution, a

gauge transformation of Ã under the gauge function,

θ =

∫ t

dt′ ϑ(t′,x) (9.2.7)

given the Poisson bracket,

[πµ(t,x), Ãν(t,x
′)]P.B. = −δµν δd−1(x− x′) (9.2.8)
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In particular, the Gauss constraint is the generator of the gauge transformation and

its vanishing implies that the physical states are gauge-invariant.

All of these extend to the case with charged matter field, say,

SMaxwell+matter =

∫
d dx

(
−1

4
F̃ 2 + Lmatter(ϕ

†, ϕ, Ã)

)
(9.2.9)

with

Lmatter = −ηµν(∂µ + iqÃµ)ϕ
†(∂ν − iqÃν)ϕ− V (ϕ†ϕ) . (9.2.10)

The conjugate momenta are

Π =
δ

δ(∂0ϕ)

∫
Lmatter = (∂0 + iqÃ0)ϕ

† ,

Π† =
δ

δ(∂0ϕ†)

∫
Lmatter = (∂0 − iqÃ0)ϕ , (9.2.11)

and the total Hamiltonian is

H =

∫
dd−1x

[
1

2
(π2 +B2) + ΠΠ† + V (ϕ†ϕ)

]
+

∫
dd−1x

[
(−∂0ϑ)π0 + (Ã0 − ϑ)

(
−∂iπi + iq(Πϕ− Π†ϕ†)

)]
.(9.2.12)

Again from π0’s null equation of motion, we find the Gauss constraint now equipped

with a charge density,

∂iπ
i + ρ ≈ 0 , ρ ≡ −iq(Πϕ− Π†ϕ†) . (9.2.13)

The matter charge part in H,∫
d d−1x ϑ

[
−iq(Πϕ− Π†ϕ†)

]
(9.2.14)

generates phase rotation of the matter field ϕ → eiq θϕ and ϕ† → e−iq θϕ†, again via

the Poisson bracket,

[Π(t,x), ϕ(t,x′)]P.B. = − δd−1(x− x′) (9.2.15)
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which completes the demonstration that the Gauss constraint is the generator of the

gauge transformation.

The ambiguous total Hamiltonian H allows arbitrary gauge transformation to

occur along the time evolution. The only sensible attitude one can take with this

undetermined nature of the evolution is to say that the resulting arbitrariness reflects

the redundancy in the description. In other words, the time evolution may look

ambiguous but all those different paths should be considered equivalent physically,

which leads to the gauge principle we have used and relied on. One can see how the

gauge redundancy is generated by the Gauss constraint, more or less.

When we quantize the system, we acquire a new option in dealing with such

ambiguity. Quantum states are functional on the phase space, so one can now demand

invariance of such functional under gauge transformations of its argument. That is,

we merely ask that the quantum amplitude remains identical across configurations

related by gauge transformations. Calling the quantized Gauss constraint,

Ggauge =
[
∂iπ

i − iq
(
ϕΠ− ϕ†Π†)] (9.2.16)

normal-ordered appropriately, with the boldfaced symbols for the quantized quanti-

ties, the natural condition to impose on physically sensible states is to demand the

gauge-invariance,

Ggauge ||||phys⟩⟩⟩⟩ = 0 (9.2.17)

The procedure outlined here represents the most intuitive and physical treatment

of the quantization in the face of gauge redundancy, but is also limited in that we had

to separate Ã0 from the rest, inevitable from how we select out the time direction.

Whether this is truly a limitation is a matter of taste, especially for Abelian gauge

theories with their relative simple form.

For non-Abelian theories, on the other hand, the Faddeev-Popov procedure offers

a fully Lorentz-covariant and systematic gauge-fixing mechanism. The covariant but

properly gauge-fixed Lagrangian no longer respects the original gauge symmetry, so

the above physical picture of how the gauge redundancy should be handled becomes

murky. Some analog of the Gauss constraint, we would like to think, should be

respected since the so-called gauge-fixing is a mathematical rewriting of the same path

integral divided by the gauge volume. How does one addresses the gauge-invariance

396



of physical quantum states, in the face of the inevitable gauge-fixing procedure? Next

we turn to this question, albeit at a formal level.

9.3 BRST Symmetry of the Gauge-Fixed Action

Let us recall the infinitesimal gauge transformations for the gauge field and the matter

fields ϕ

δΘA = dAΘ = dΘ+AΘ−ΘA , δΘϕ = −Θϕ , (9.3.1)

For the latter, ϕ stands for both scalars and spinors while the appropriate represen-

tation understood implicitly.

With Faddeev-Popov’s gauge-fixed action, this transformation no longer preserve

the Yang-Mills-Matter path integral∫
[DA][Dϕ] e−SE(ϕ;A)+ ζ2/2

∫
trK(A)2Det (Qghost)

=

∫
[DA][Dϕ][DbDv] e−S

E(ϕ;A)+ ζ2/2
∫
trK(A)2+tr(bQghostv) (9.3.2)

since neither the gauge fixing condition K(A) nor Qghost = δK/δΘ are gauge-invariant.

For the structure below, we may keep the gauge-fixing condition K and the number

ζ2 > 0 arbitrary, although we have employed specific expressions, such as K = D̄µAµ

and ζ2 = 1/g2 in Chapter 3. We left “tr” somewhat ambiguous, although for classical

Lie algebras, one can write the ghost fields in the N ×N matrix form and the trace

may be performed in the defining representation. For exceptional Lie algebra, these

depend pretty much follow how we write the kinetic term of A.

Although we have done this for non-Abelian Yang-Mills theories in Chapter 3, the

same is needed for Abelian theories as well. We have computed there how the matter

field quantization affect the gauge fields in QED, but of course quantized Maxwell field

would also affect the matter fields as well via the minimal coupling of the latter to the

former. The necessary path integral over the gauge field requires such a gauge-fixing

procedure, regardless of Abelian or non-Abelian. One simplification for Abelian gauge

theories is that the typical covariant gauge choice K(A) = DµAµ = ∂µAµ does not

lead to new vertices, so that this gauge-fixing affects only the gauge-field propagators.
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Other than that, the basic ingredients to the Faddeev-Popov procedure are identical,

so everything we offer in this chapter is equally applicable.

It turns out that this gauge-fixed path integral can be trivially extended to admit

a new type of redundancy, by rewriting the trK(A)2 in the exponent as

eζ
2/2

∫
trK(A)2 =

∫
[DB] e1/(2ζ

2)
∫
trB2−i

∫
tr(B K(A)) (9.3.3)

so that we end up with∫
[DA][Dϕ][DbDv][DB] e−S

E(ϕ;A)−SEg.f.(A;b,v;B) (9.3.4)

where

SEg.f.(A;b, v;B) =
∫ [
− 1

2ζ2
trB2 + i tr (B K(A))− tr

(
b
δK
δΘ

v

)]
(9.3.5)

We use the same trace convention for B as we do for the ghosts.

As was originally found by Carlo Becchi, Alain Rouet, Raymond Stora and Igor

Tyutin, this new action SE(ϕ;A) + SEg.f. remembers the gauge redundancy with a

twist. We shall find transformation rules where Θ is replaced by v, including

δvA ≡ −dAv = −dv−Av− vA , δvϕ = −vϕ , (9.3.6)

that preserves SE(ϕ;A) and SEg.f. separately. For the former, the transformation

above is a verbatim translation of Θ → v for the gauge transformation, except one

important aspect of the BRST “grading”, as we will see below, so

δvS
E(ϕ;A) = 0 (9.3.7)

should be immediate.

Let us show this more carefully and then move on to SEg.f.. Recall from the

differential calculus how we assign the notion of “degree” to differential forms such

that ordinary p-form and p′-form can exchange the relative position modulo a sign,

Ω(p) ∧ Ω̃(p′) = (−1)p·p′ Ω̃(p′) ∧ Ω(p) (9.3.8)
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Something similar happens with Grassmann numbers

z′z = −z z′ (9.3.9)

We encode this rule by assigning the “ghost number” ngh such that a sign (−1)ngh·n′
gh

accompanies all exchanges. All Grassmann quantities are equipped with odd ngh.

The assignments for the field content are

ngh(A) = 0 , ngh(v) = 1 , ngh(b) = −1 , ngh(B) = 0 (9.3.10)

We see that SEg.f. carries zero ghost number naturally.

Finally, we define the BRST grading nBRST as

nBRST = p+ ngh (9.3.11)

and use it for the rule of signs when various quantities exchange positions, with both

the degree p and the ghost number ngh taken into account. For example, there is a

potential sign flip, e.g.,

Ω(p) ∧
(

z Ω̃(p′)
)
= (−1)(p+0)·(p′+1)

(
z Ω̃(p′)

)
∧ Ω(p) (9.3.12)

for a Grassmann number z, say, with ngh = 1. Under this, with the most general

form of v =
∑

ziΘi, we find

−dv =
∑

zi ∂µΘi dx
µ , −A v− v A =

∑
zi [Aµ,Θi] dx

µ (9.3.13)

which results in the usual gauge transformation rule

δvAµ = ∂µv +Aµv− vAµ = Dµv , (9.3.14)

component-wise.

Furthermore, we also demand that

d δv + δv d = 0 (9.3.15)

as part of the definition of δv. This is needed for how δv should be also a (Grassmann-
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valued) gauge-transformation on F , i.e.,

δvF = F v− vF (9.3.16)

With (9.3.15), the left hand side may be expressed as

δvF = −d(δvA) + δvA ∧A−A ∧ δvA

→ z (d(δΘA) +A ∧ δΘA+ δΘA ∧A) = z δΘF (9.3.17)

upon v = zΘ, which is also on par with the usual gauge transformation δΘF = F Θ−
ΘF . Thus we arrived at δvS

E(ϕ;A) = 0, as promised, following from δΘS
E(ϕ;A) =

0.

All we have done here is to translate bosonic Θ to Grassmann v without losing

any part of the infinitesimal gauge transformations. The claim is that this δv can be

extended to v, b, and B such that

δvS
E
g.f. = 0 (9.3.18)

as well, so that the total action from the Faddeev-Popov gauge fixing retains the

essence of the gauge redundancy despite the gauge-fixing. The difference here is that

because v is now Grassmann, the would-be-infinite volume associated with the gauge

redundancy is no longer there. The extended rules for δv are fairly simple,

δvv = −v2 , δvb = iB , δvB = 0 (9.3.19)

Note that δv increases the ghost number ngh by unit just as d increases the degree p

by unit.

To show δvS
E
g.f. = 0, it is useful to show first the nilpotency,

δvδv = 0 (9.3.20)

analogous to dd = 0. On b and B, this nilpotency follows from δvB = 0. On v it

follows immediately from

δvδvv = −δvv
2 = −(δvv)v + v(δvv) = v3 − v3 = 0 (9.3.21)
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while, on Aµ, it takes a bit more steps,

δvδvAµ = δv (Dµv) = (δvAµ) v + v (δvAµ) +Dµ

(
−v2

)
= (Dµv) v + v (Dµv) +Dµ

(
−v2

)
= 0 (9.3.22)

For the latter, it is important to recall that, although A as 1-form is BRST-odd, the

components Aµ are BRST-even.

Combining all, one can go one more step and find

(d+ δv)
2 = d d+ (d δv + δv d) + δvδv = 0 (9.3.23)

from each of three pieces in the middle vanishing identically, such that d+ δv is also

a nilpotent operator. Together with the other nilpotencies, dd = 0 = δvδv, we find

formal similarities among d, δv, and d+ δv. Each of these nilpotent operators raises

p, ngh, and nBRST by unit, respectively, and will be of immense use down the road.

The final step for showing how δv is the new symmetry is to notice

SEg.f. = δvP , P =

∫
tr

[
b

(
i

2ζ2
B + K(A)

)]
(9.3.24)

P is a Grassmann-valued functional with ngh = −1. δv acting on b produces∫
tr

[
iB

(
i

2ζ2
B + K(A)

)]
=

∫ [
− 1

2ζ2
trB2 + i tr (B K(A))

]
(9.3.25)

while on the latter factor gives∫
tr [−b δvK(A)] =

∫
−tr

[
b
δK
δΘ

v

]
(9.3.26)

respectively producing the two blocks present in SEg.f.. The former generates the gauge-

fixing term upon B integration while the latter reduces to the ghost determinant.

Then, we find

δv

[
SE(ϕ;A) + SEg.f.

]
= 0 + δvδvP = 0 (9.3.27)

from the nilpotency δ2v = 0, and arrive at the claimed BRST invariance of the gauge-

fixed action.
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9.4 BRST Quantization

This emergent BRST symmetry is useful both technically and conceptually. The

gauge-fixing procedure is unavoidable in gauge theories with the infinite gauge-volume,

yet the notion of gauge invariance must survive the quantization. The gauge invari-

ance means that the physical states should be annihilated by the Gauss constraint,

at quantum level; however, if the path integral lose the gauge redundancy due to

the gauge-fixing procedure, it would not have been clear why and how one could

impose such an constraint. The BRST symmetry inherits the essence of the gauge

symmetry, even after the gauge-fixing is performed, so we can honestly ask about

the consequences of and sometimes the failure of the gauge redundancies in the fully

quantum language.

Instead, what we have found above implies that the gauge invariance is replaced

by the BRST invariance,

QBRST ||||phys⟩⟩⟩⟩ = 0 (9.4.1)

where QBRST is the quantum BRST charge operator generated by δv. In other words,

after the gauge-fixing, QBRST replaces Ggauge that we used prior to the gauge-fixing

description. Physical quantum states should thus belong to

kernel(QBRST) (9.4.2)

On the other hand, a physical state should be considered unchanged under a shift

||||phys⟩⟩⟩⟩ → ||||phys⟩⟩⟩⟩ +QBRST |||| · · · ⟩⟩⟩⟩ (9.4.3)

since the shift represents a gauge transformation. States mutually related by shifts

induced by QBRST acting on some other state should be considered one and the same

physical state.

The nilpotency of δv translates to the nilpotency

(QBRST)
2 = 0 (9.4.4)

at quantum level. As such, the image of QBRST, representing gauge transformation,

is a subset of the kernel of QBRST. All these mean that physical states belong to the
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quotient,

kernel(QBRST)

image(QBRST)
(9.4.5)

constructed starting from the Fock space of A, v, b, and B. Since the field content

now includes ghosts as well, the states are graded by ngh, with QBRST increasing the

ghost number by unit. This decomposition

kernel(QBRST)

image(QBRST)
= ⊕ngh

kernel(QBRST)

image(QBRST)

∣∣∣∣
ngh

(9.4.6)

then defines

⊕ngh
H(ngh)

BRST (9.4.7)

a cohomology associated with the complex of QBRST. The true statement is that the

physical Hilbert space is given by the zero-th such that

H(0)
BRST = {||||phys⟩⟩⟩⟩} . (9.4.8)

This offers a manifestly Lorentz-covariant quantization scheme, known as the BRST

quantization.

This BRST quantization has proven to be particularly convenient and practical for

lower dimensional theories, with the most prominent example being the worldsheet

dynamics of fundamental strings. For our purpose in the remainder of this volume,

the observation that these BRST symmetries and the resulting BRST quantization

sit behind the gauge symmetry, despite the inevitable gauge-fixing, suffices as we wish

to explore the consequences and the unexpected failure of the gauge redundancies in

the fully quantized framework.
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