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Motivation

Many foundational theories in deep learning are formulated over the
field of real numbers, relying on the assumptions of infinite precision
and continuity.

For example, results such as the universal approximation theorem are
typically stated in terms of real-valued functions, weights, and
activations, existing within the realm of pure mathematics.
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Motivation

Figure: Landscape of Real Neural Network
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Motivation

But actual neural networks operate on computer systems using
finite-precision arithmetic.
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Motivation

Figure: Floating-point landscape?
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Motivation

Modern LLM models actively adopt low-precision formats to reduce
weight storage and computation.

OpenAI uses mixed-precision training in models like GPT-3.5 and
GPT-4—primarily employing FP16 to accelerate training and reduce
GPU memory usage.

This further widens the gap between theoretical analysis over the
reals and practical implementation.
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Motivation

For each theorem formulated over the reals, we need a corresponding
version that applies to finite-precision computation.

Universal Approximation Theorem → Floating-point Universal
Approximation Theorem

Optimization Theory → Optimization under Floating-Point Arithmetic

Generalization Error Analysis → Generalization Error Analysis under
Floating-Point Arithmetic

Geonho Hwang with Yeachan Park, Wonyeol Lee, and Sejun ParkFloating-Point Neural Networks Can Represent “Almost All” Floating-Point FunctionsMay 28, 2025 7 / 35



Universal Approximation Theorem for Floating-point
Setting

In this presentation, we focus on the universal approximation theorem in
the context of floating-point neural networks.

Traditional universal approximation theorem: for every f : Rd ⊃ K → R,
there exists a neural network g : K → R such that

∥f − g∥ < ϵ. (1)

Floating-point universal approximation theorem: for every
f : Fd ⊃ M → F, there exists a floating-point neural network g : M → F
such that

f = g . (2)
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Floating-point Numbers

In modern computers, most numbers are saved in the format of
floating-point numbers.

Definition

Let p, q ∈ N denote the number of mantissa bits and exponent bits,
respectively. We define Fp,q to be the set of finite floating-point numbers:

Fp,q :={
s×(1.m1 · · ·mp)×2e : s ∈ {−1, 1},m1, . . . ,mp ∈ {0, 1}, e ∈ [emin, emax]Z

}
∪
{
s × (0.m1 · · ·mp)× 2emin : s ∈ {−1, 1},m1, . . . ,mp ∈ {0, 1}

}
(3)
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Floating-point Numbers
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IEEE-754

Format (p, q)

8-bit E5M2 [MSB+22] (2, 5)
8-bit E4M3 [MSB+22] (3, 4)
16-bit half-precision float (float16) (10, 5)
32-bit single precision float (float32) (23, 8)
64-bit double precision float (float64) (52, 11)
bfloat16 [Goo, AAB+16] (7, 8)

Table: List of frequently used floating-point formats.

The IEEE-754 standard [IEE19] defines p and q for widely used
floating-point formats:
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Floating-point Numbers

Exponents range from emin := −2q−1 + 2 to emax := 2q−1 − 1.
For example, in FP32, where p = 23 and q = 8, exponents are from −126
to 127.
The smallest and the largest finite positive floating-point numbers are

ω = 2emin−p = 2−126−23 = 2−149, (4)

and
Ω =

(
2− 2−p

)
× 2emax = 1.1 · · · 1× 2127, (5)

respectively. We define F = Fp,q. And

F = F ∪ {∞,−∞,NaN}. (6)

Geonho Hwang with Yeachan Park, Wonyeol Lee, and Sejun ParkFloating-Point Neural Networks Can Represent “Almost All” Floating-Point FunctionsMay 28, 2025 12 / 35



Rounding Operation

The rounding operation ⌈·⌋F : R ∪ {−∞,∞,NaN} → F is defined as

⌈x⌋F =


argminy∈F|x − y | if |x | < Ω

(
1 + 2−p−1

)
,

∞ if x ≥ Ω
(
1 + 2−p−1

)
,

−∞ if x ≤ −Ω
(
1 + 2−p−1

)
,

NaN if x = NaN.
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Rounding Operation

Figure: Round-to-even rounding rule

There may be two floating-point numbers equidistant from a real number.
In such a case, we break the tie using the tie-to-even rule: ⌈x⌋F is y ,
where y is the unique floating-point number whose last mantissa bit mp

(see Equation (3)) is zero.
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Floating-point Operation

For x , y ∈ F, we define the floating-point operations ⊕,⊖, and ⊗ as

x ⊕ y := ⌈x + y⌋ , (7)

x ⊖ y := ⌈x − y⌋ , (8)

and
x ⊗ y := ⌈x × y⌋ . (9)
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Pathological Behavior of Floating-point Numbers

Floating-point addition is not associative:

(x ⊕ y)⊕ z ̸= x ⊕ (y ⊕ z). (10)

For example,

1 =
(
1⊕ 2−p−1

)
⊕ 2−p−1 = 1⊕

(
2−p−1 ⊕ 2−p−1

)
= 1 + 2−p. (11)
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Correctly Rounded Activation Function

For ρ : R → R, we define the correctly rounded function ⌈ρ⌋ : F → F of ρ
as follows:

⌈ρ⌋ (x) =


⌈ρ(x)⌋ if x ∈ F,
⌈l⌋ if x = −∞∧ ∃ limx→−∞ ρ(x),

⌈r⌋ if x = ∞∧ ∃ limx→∞ ρ(x),

NaN otherwise,
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Floating-point Neural Networks

The affine transformation aff I : F
d1 → Fd2 is defined as

aff I (x1, . . . , xd1)i =

 d1⊕
j=1

(wi ,j ⊗ xj)

⊕ bi for i ∈ [d2].

We must be very careful about the ordering of the operations. For
multiple floating-point numbers x1, . . . , xn, we define

⊕
as

n⊕
i=1

xi := x1 ⊕ · · · ⊕ xn = (. . . (x1 ⊕ x2)⊕ x3)⊕ . . . )⊕ xn.

Then, for I = {I1, . . . , Il}, a σ network NI : Fd1 → Fdl is defined as the
composition:

NI = aff Il ◦ σ ◦ · · · ◦ aff I2 ◦ σ ◦ aff I1 .
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Universal Approximation of Floating-point Neural Networks

Consider the case where we aim to approximate an arbitrary function
f : [−2, 2]F → F. Suppose we define an activation function σ : F → F as
follows:

σ(x) =


0 if |x | ≤ 2p,

1 if ∞ > |x | > 2p,

NaN if |x | = ∞.

(12)

To achieve the universal approximation, we must be able to distinguish
between 0 and ω, which means that there exists w , b ∈ F such that

σ(w ⊗ 0⊕ b) ̸= σ(w ⊗ ω ⊕ b). (13)

If w is small,
σ(w ⊗ 0⊕ b) = σ(w ⊗ ω ⊕ b). (14)

If w is large, then,
σ(w ⊗ 2⊕ b) = NaN. (15)
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Distinguishability

Definition (Distinguishability)

Let σ : F → F, d ∈ N, M ⊂ Fd , and R ⊂ F. We say that “M is
σ-distinguishable with range R” if for any x ∈ M, there exist n ∈ N and
affine transformations ϕ1, . . . , ϕn : Fd → F satisfying the following: for
each y ∈ M, there exists iy ∈ [n] such that

σ(ϕiy (y)) ̸= σ(ϕiy (x))

and σ(ϕi (M)) ⊂ R for all i ∈ [n].
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Distinguishability

To represent all functions from M ⊂ Fd to F, one can observe that M
should be σ-distinguishable with range F ∪ {−∞,∞}.

Lemma

Let d ∈ N, M ⊂ Fd , and σ : F → F. If M is not σ-distinguishable with
range F ∪ {−∞,∞}, then there exists f : M → F ∪ {−∞,∞} such that
for any σ network g, there exists x ∈ M such that g(x) ̸= f (x).

We note that if a one-dimensional subset M ⊂ F is σ-distinguishable with
some range, then for any d ∈ N, Md is also σ-distinguishable with the
same range.
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Non-distinguishable Activation Function

Lemma

Any f : [−2⌊(p+7/2)⌋, 2⌊(p+7/2)⌋]F → F with f (0) ̸= f (ω) cannot be
represented by a ⌈cos⌋ network.

Proof Sketch.

cos(x) ≈ 1− x2

2 near zero, and if cos(x) > 1− 2−p−1,

⌈cos⌋ (x) = 1. (16)

Therefore, for |x | ⪅ 2(−p−1)/2,

⌈cos⌋ (x) = 1. (17)
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Universal Approximation of Floating-point Neural Networks

Theorem

Let σ : F → F, d1, d2 ∈ N, M ⊂ Fd1 , and f : M → (F ∪ {−∞,∞})d2 .
Suppose that σ satisfies the following condition and M is
σ-distinguishable with range [−2emax , 2emax ]F. Then, there exists a
four-layer σ network g such that g = f on M.

Condition

For an activation function σ : F → F, there exist C0,C1,C2 ∈ F with
|Ci |, |Cj − Ci | ≤ 2emax for all 0 ≤ i , j ≤ 2 such that

σ(C0) = 0, 2emin ≤ |σ(C1)| <
5

4
, |σ(C2)| > (2−p−2)+.
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Sufficient Condition for Distinguishability

Lemma

Let ρ : R → R and ρ̂(x) be one of the following: ρ(x), ρ(−x),−ρ(x),
−ρ(−x). Suppose that there exist e ∈ Z, L1, L2 > 0, and ρ̂(x) is one of
ρ(x), ρ(−x),−ρ(x), −ρ(−x) satisfying the following:

ρ̂(x) ≤ L2x for all x ∈ [0, 2e),

L1 ≤ ρ̂′(x) for 0 < x < 2e ,

for l1 := ⌊−1 + log2 L1⌋ and l2 := ⌊1 + log2 L2⌋, it holds that l1 ≥ −p
and p ≥ l2 − l1.

Then, for e ′ := emax +min{−l2, e − 2}, (−2e
′
, 2e

′
)F is ⌈ρ⌋-distinguishable

with range [−2emax , 2emax ]F.
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Sufficient Condition for Distinguishability

Figure: Visualization of the conditions in the lemma. ρ : R → R is located
between L1x and L2x . The ratio between L2 and L1 must be at most
approximately 2p.
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Distinguishable Activation Functions

Corollary

Let σ be a correctly rounded version of any of the following: identity,
ReLU, ELU, SeLU, GELU, Swish, Mish and sin. For any d ∈ N, σ
networks can represent any functions from (−2emax−2, 2emax−2)dF to
F ∪ {−∞,∞}.
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Distinguishable Activation Functions

Lemma

Let σ : F → F such that σ(F ∪ {−∞,∞}) ⊂ [−2emax , 2emax ]F. Suppose
that σ has two separating points η1 < 2 and η2 ≥ 2. Then, F is
σ-distinguishable with range [−2emax , 2emax ]F.

Corollary

For any d ∈ N, networks using ⌈Sigmoid⌋ or ⌈tanh⌋ can represent any
functions from Fd to F.
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Indicator Function

Lemma

Let σ : F → F, d ∈ N, and M ⊂ Fd . Suppose that σ satisfies
Condition 5.1 and M is σ-distinguishable with range [−2emax , 2emax ]F.
Then, for any z ∈ Fd and c ∈ {C1,C2}, there exists a three-layer σ
network f : M → F ending with the activation function such that

f (x) = σ (c)1z (x) .
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Sequential Addition

Definition (Sequential addition)

Let σ : F → F. We say a function f : F → F is a “sequential addition
using σ” if f (F) ⊂ F and there exist n ∈ N and z1, . . . , zn ∈ Σσ such that
for each x ∈ F,

f (x) = x ⊕ z1 ⊕ · · · ⊕ zn (18)

where Σσ := {w ⊗ σ(c) : w , c ∈ F with w ⊗ σ(c) ∈ F}. We often drop σ
and use Σ to denote Σσ if it is clear from the context.
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Sequential Addition

Sequential 
Addition

Figure: Visualization of the sequential addition embodied by an affine
transformation. If f2 is the output of some σ network ending with the activation
function, then, for a sequential addition f1 using σ, f1 ◦ f2 can be represented by σ
networks.
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Power of Sequential Addition

Definition (Transferability)

Let n ∈ N and (x1, . . . , xn), (y1, . . . , yn) ∈ Fn. We say “(x1, . . . , xn) is
transferable to (y1, . . . , yn) using σ” or “(x1, . . . , xn)

σZ=⇒ (y1, . . . , yn)” if
there exists a sequential addition f : F → F using σ such that f (xi ) = yi
for all i ∈ [n].

Lemma

Let σ : F → F and suppose that σ satisfies Condition 5.1. Then, for any
y ∈ [−2emax , 2emax)F and x1, x2 ∈ [−2emax , 2emax ]F such that
x2 − x1 ∈ (0, 2emax ]F, it holds that

(−2emax , y , y+, 2emax)
σZ=⇒ (x1, x1, x2, x2).
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Entire Proof Sketch

⋯

Figure: Structure of the indicator constructed by the σ network in Theorem 10.
Affine transformations are represented as lines, and the output of activation
functions are represented as circles and rectangles.
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Conclusion

In this work, we propose the necessary and sufficient conditions for
activation functions in neural networks to represent arbitrary
floating-point functions.

Specifically, we demonstrate that the distinguishability of an
activation function is crucial for determining the representability of
neural networks.

Our results cover almost all practical activation functions.
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Future Work

How does backpropagation work under floating-point arithmetic?

Does it converge to a minimum?
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