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Motivation

@ Many foundational theories in deep learning are formulated over the
field of real numbers, relying on the assumptions of infinite precision

and continuity.

@ For example, results such as the universal approximation theorem are
typically stated in terms of real-valued functions, weights, and
activations, existing within the realm of pure mathematics.
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Motivation

No residual connections With residual connections

& i

Same general network architecture

Figure: Landscape of Real Neural Network
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Motivation

But actual neural networks operate on computer systems using
finite-precision arithmetic.

@ 0.00110011

@ 1.01100100 output

@ 0.10011001
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Motivation

Figure: Floating-point landscape?
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Motivation

@ Modern LLM models actively adopt low-precision formats to reduce
weight storage and computation.

@ OpenAl uses mixed-precision training in models like GPT-3.5 and
GPT-4—oprimarily employing FP16 to accelerate training and reduce
GPU memory usage.

@ This further widens the gap between theoretical analysis over the
reals and practical implementation.
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Motivation

For each theorem formulated over the reals, we need a corresponding
version that applies to finite-precision computation.

@ Universal Approximation Theorem — Floating-point Universal
Approximation Theorem

@ Optimization Theory — Optimization under Floating-Point Arithmetic

@ Generalization Error Analysis — Generalization Error Analysis under
Floating-Point Arithmetic
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Universal Approximation Theorem for Floating-point
Setting

In this presentation, we focus on the universal approximation theorem in
the context of floating-point neural networks.

Traditional universal approximation theorem: for every f : R 5 K — R,
there exists a neural network g : K — R such that

If —gll <e (1)

Floating-point universal approximation theorem: for every
f:F9 > M — T, there exists a floating-point neural network g : M — F
such that

f=g. (2)
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-
Floating-point Numbers

In modern computers, most numbers are saved in the format of
floating-point numbers.

Definition

Let p, g € N denote the number of mantissa bits and exponent bits,
respectively. We define I, 4 to be the set of finite floating-point numbers:

Fpq =
{sx(Lmy---mp)x2¢:se{-1,1},m1,...,mp € {0,1}, € € [emin, emax]z }
U{sx (0.my---mp) x 2" :s € {~1,1},my,...,mp € {0,1}} (3)
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Floating-point Numbers

Traditional floating point (IEEE 754 style)

011111010000000

sign exponent significand fraction (mantissa)

s e f
“1sx2ex (1 + f) (normalized significand)

41 x 20 1,.1,__
11 x 2 x(1+2+8)_ 1.625
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IEEE-754

Format ‘ (p,q)
8-bit ESM2 [MSB+22] (2,5)
8-bit EAM3 [MSB+22] (3,4)
16-bit half-precision float (float16) (10,5)
32-bit single precision float (float32) | (23,8)
64-bit double precision float (float64) | (52,11)
bfloat16 [Goo, AABT16] (7,8)

Table: List of frequently used floating-point formats.

The IEEE-754 standard [IEE19] defines p and g for widely used
floating-point formats:
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-
Floating-point Numbers

Exponents range from emin == —2971 4+ 2 t0 emay = 2971 — 1.

For example, in FP32, where p = 23 and g = 8, exponents are from —126
to 127.

The smallest and the largest finite positive floating-point numbers are

W = 2tmin—P — 9—126-23 _ 5—149. (4)

and
Q=(2-27P) x 2" =11.--1x 27, (5)

respectively. We define F = I, . And

F =TFU {0, —00, NaN}. (6)
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-
Rounding Operation

The rounding operation [- |z : RU {—00,00,NaN} — F is defined as

argmin cp|x —y| if x| <Q(1+27P71),

00 if x> Q(1+27P71),

[XJF: . —p—1
—00 |fx§—§2(1+2 p ),
NaN if x = NaN.
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-
Rounding Operation

Previous representable FP value Mid-point Next representable FP value
I : I
I [ I

Figure: Round-to-even rounding rule

There may be two floating-point numbers equidistant from a real number.
In such a case, we break the tie using the tie-to-even rule: [x]y is y,
where y is the unique floating-point number whose last mantissa bit m,
(see Equation (3)) is zero.
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|
Floating-point Operation

For x,y € T, we define the floating-point operations @, S, and ® as
x@y=[x+y],

X@y:: ’VX_va
and
Xy =[xxy|.
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Pathological Behavior of Floating-point Numbers

Floating-point addition is not associative:
(x®y)®z#xD(y D 2). (10)
For example,

1=(1g2 P )2 Pl=1a@2Ple2P)=1+27P. (11)
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Correctly Rounded Activation Function

For p: R — R, we define the correctly rounded function [p] : F — F of p

as follows:
o(x)] ifx e,
o (x) = ] ?f X =—00A 3 limy— oo p(x),
[r] if x =00 A Flimyx_00 p(x),
NaN otherwise,
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Floating-point Neural Networks

The affine transformation aff; : B — F® is defined as

d1
aff/(xl,...,xdl),-: @(W,’J@Xj) @ b; foriE[dz].
j=1

We must be very careful about the ordering of the operations. For
multiple floating-point numbers xi, ..., x,, we define € as

n
EBX,- =x1D - Bxp=(...1Dx)Dx3)D...) D Xp.
i=1

Then, for Z={h,..., 1}, a 0 network N7 : Fo — ﬁd’ is defined as the
composition:
Nz =aff,oo0---oaff), oo oaffy.
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Universal Approximation of Floating-point Neural Networks

Consider the case where we aim to approximate an arbitrary function

f:[-2,2]r — . Suppose we define an activation function o : F — F as
follows:

0 if [x| < 2P,
o(x)=<1 if oo > [x| > 2P, (12)
NaN if [x| = oc.
To achieve the universal approximation, we must be able to distinguish
between 0 and w, which means that there exists w, b € F such that

o(w®0® b) #o(w@w D b). (13)
If wis small,
o(w®0® b)=0(w@wd b). (14)
If wis large, then,
o(w®2® b) = NaN. (15)
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-
Distinguishability

Definition (Distinguishability)

leto:F - F deN, McCF9 and R C F. We say that “M is
o-distinguishable with range R" if for any x € M, there exist n € N and
affine transformations ¢y, ..., ¢, : F¢ — T satisfying the following: for
each y € M, there exists i, € [n] such that

a(9i,(y)) # (i, (x))

and o(¢i(M)) C R for all i € [n].
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-
Distinguishability

To represent all functions from M C F? to I, one can observe that M
should be o-distinguishable with range IF U {—00, c0}.

Lemma

Letd e N, M CF9, and o : F — F. If M is not o-distinguishable with
range F U {—o0, 0}, then there exists f : M — F U {—o00, 00} such that
for any o network g, there exists x € M such that g(x) # f(x).

We note that if a one-dimensional subset M C F is o-distinguishable with
some range, then for any d € N, M is also o-distinguishable with the
same range.
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Non-distinguishable Activation Function

Lemma

Any f o [-2Lp+7/2)] 2lp+7/2)]]p 5 F with f(0) # f(w) cannot be
represented by a [cos| network.

Proof Sketch.

cos(x) ~ 1 — % near zero, and if cos(x) > 1 — 271,

[cos| (x) = 1. (16)

Therefore, for |x| S 2(-P~1)/2,
[cos] (x) = 1. (17)
[
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Universal Approximation of Floating-point Neural Networks

Theorem

Leto :F—TF, di,dp €N, M CF%, and f: M — (F U {—00,00})%.
Suppose that o satisfies the following condition and M is
o-distinguishable with range [—2°m 2¢max]. Then, there exists a
four-layer o network g such that g = f on M.

Condition

For an activation function o : F — F, there exist Cy, C1, Co € F with
|Gil, |G — Gi| <2 for all 0 < i,j <2 such that

5
o(Co) =0, 20 < Jo(Q)| < 5, [o(C)| > (277 2)*.
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-
Sufficient Condition for Distinguishability

Lemma

Let p: R — R and p(x) be one of the following: p(x), p(—x), —p(x),
—p(—x). Suppose that there exist e € Z, L1, Ly > 0, and p(x) is one of
p(x), p(—x), —p(x), —p(—x) satisfying the following:

o p(x) < Lpx for all x € [0,2°),

o L3 <pl(x) for0 < x < 2°,

o forlh = |—1+log, Li] and hh := |1+ log, L2], it holds that } > —p

and p>h —h.

Then, for € = emax + min{—h, e — 2}, (=2¢',2¢)g is [p|-distinguishable
with range [—2¢max, 2max] .

(SIS T o VY -V I CEYe BT =T MRV [oating-Point Neural Networks Can Represen May 28, 2025 24 /35



-
Sufficient Condition for Distinguishability

v

Figure: Visualization of the conditions in the lemma. p: R — R is located
between Lix and Lyx. The ratio between L, and L; must be at most
approximately 2P.
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Distinguishable Activation Functions

Corollary

Let o be a correctly rounded version of any of the following: identity,
ReLU, ELU, SeLU, GELU, Swish, Mish and sin. For any d € N, ¢
networks can represent any functions from (—2tms=2 2tmax=2)d to
FU{—00,00}.
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Distinguishable Activation Functions

Lemma

Let o : F — T such that o(F U {—00,00}) C [—2¢max, 2¢max]p. Suppose
that o has two separating points 1 < 2 and np > 2. Then, F is
o-distinguishable with range [—2¢max, 2¢max] .

Corollary

For any d € N, networks using [Sigmoid| or [tanh]| can represent any
functions from F9 to F.
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Indicator Function

Lemma

Letoc:F—TF,deN, and M C F. Suppose that o satisfies
Condition 5.1 and M is o-distinguishable with range [—2°ma, 2¢max] ..
Then, for any z € F¢ and ¢ € {Cy, G}, there exists a three-layer o
network f : M — F ending with the activation function such that

f(x)=0(c)l;(x).
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|
Sequential Addition

Definition (Sequential addition)

Let o : F — F. We say a function f : F — F is a “sequential addition
using ¢ if f(F) C F and there exist n € N and z1,...,z, € ¥, such that
for each x € I,

f(X)=x®z1®- @z, (18)
where X, = {w ® o(c) : w,c € F with w ® o(c) € F}. We often drop o
and use ¥ to denote X, if it is clear from the context.
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Sequential Addition

| fo(z)Bwr ®@o(c1) @+ B wy, @o(cn) |

Figure: Visualization of the sequential addition embodied by an affine
transformation. If £, is the output of some o network ending with the activation
function, then, for a sequential addition f; using o, f; o f» can be represented by o

networks.
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Power of Sequential Addition

Definition (Transferability)

Let n€ Nand (x1,...,xn), (y1,---,¥n) € F". We say “(x1,...,Xp) is
transferable to (y1,...,¥n) using 0" or “(x1,...,Xn) s (V1y.--yyn)"if
there exists a sequential addition f : F — F using o such that f(x;) = y;
for all i € [n].

Lemma

Let 0 : F — F and suppose that o satisfies Condition 5.1. Then, for any
y € [—2fmax 2*ma)p and xq, xp € [—2%mex, 2'max|p such that
xp — x1 € (0,2, it holds that

(_2emax’y’y+7 2emax) 'é (Xla X13X27X2)‘
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Entire Proof Sketch

o(H)

H =

0(f11) @0 @ ®ado(fia) - ®(fu2) Do B - Do
N——r N——r

hy hap

[ U(fl.l)”‘T(fl.z)”ff(le)” a(fo2)|[ o(Fa)|[o(fn2)]

fia

f1,2

Figure: Structure of the indicator constructed by the o network in Theorem 10.

Affine transformations are represented as lines, and the output of activation

functions are represented as circles and rectangles.
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Conclusion

@ In this work, we propose the necessary and sufficient conditions for
activation functions in neural networks to represent arbitrary
floating-point functions.

@ Specifically, we demonstrate that the distinguishability of an
activation function is crucial for determining the representability of
neural networks.

@ Our results cover almost all practical activation functions.
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N
Future Work

@ How does backpropagation work under floating-point arithmetic?

@ Does it converge to a minimum?
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