
Weight Initialization Methods for FFNNs with Diverse
Activation Functions

Hyunwoo Lee

Korea Institute for Advanced Studys

May 28, 2025
2025 KIAS CAINS Workshop

Hyunwoo Lee (KNU) Weight Initialization Methods
May 28, 2025 2025 KIAS CAINS Workshop
1 / 70

Contents

1 Introduction

2 Proposed Weight Initialization for ReLU Networks

3 Proposed Weight Initialization for Tanh Networks

4 Future Work

2 / 70

1. Introduction

Introduction 3 / 70

Preliminary

Let K pairs of training samples {(xi , yi)}Ki=1, where xi ∈ RNx is the
training input and yi ∈ RNy is its corresponding output.

Here, Nx and Ny are the number of nodes in the input layer and
output layer, respectively.

Feedforward Neural Network (FFNN)

xℓ = f (zℓ) = f (Wℓxℓ−1 + bℓ) ∈ RNℓ for all ℓ = 1, . . . , L,

where xℓ−1 ∈ RNℓ−1 is the input feature of ℓ-th layer, Wℓ ∈ RNℓ×Nℓ−1 is
the weight matrix, bℓ ∈ RNℓ is the bias vector for each ℓ = 1, . . . , L, and
f (·) is an element-wise activation function.

Weight Initialization

The weight initialization aims to set the initial values of {Wℓ}Lℓ=1 such
that training is efficient and convergence is achieved.

Introduction 4 / 70

Preliminary

Question

Why is weight initialization important for training neural networks [1, 2]?

Speeds Up Convergence

Improves Model Performance

Dataset Efficiency

Enables Training Across Various Architecture Sizes

Introduction 5 / 70

Preliminary

ReLU Activation Function

The ReLU activation function is an activation function defined as the
positive part of its argument:

f (x) = max(0, x)

Figure 1: ReLU activation function

Introduction 6 / 70

Preliminary

Tanh Activation Function

The tanh (hyperbolic tangent) activation function is defined as:

f (x) = tanh(x) =
ex − e−x

ex + e−x

Figure 2: Tanh activation function

Introduction 7 / 70

Activation Function Preferences

Neural Networks Commonly Using ReLU

Feedforward Neural Networks

Convolutional Neural Networks

Deep Residual Networks

Transformers

Neural Networks Commonly Using tanh

Recurrent Neural Networks

Long Short-Term Memory Networks

Autoencoders

Physics Informed Neural Networks

Weight initialization depends on activation function.

Introduction 8 / 70

Overview of Prior and Proposed Methods

Prior Methods on Weight Initialization for ReLU Neural Networks

Orthogonal initialization (Saxe et al., 2014) [13]

He Initializaition (K. He et al., 2015) [12]

Gaussian submatrix initialization (R. Burkholz et al., 2019) [11]

Randomized asymmetric initialization (L. Lu et al., 2020) [10]

Zero initialization (J. Zhao et al., 2022) [14]

Proposed method 1 (H, Lee, et al., 2024) [15]

Prior Method on Weight Initialization for Tanh Neural Networks

Xavier Initializaition (X. Glorot & Y. Bengio, 2010) [9]

Proposed Method 2 (H, Lee, et al., 2024) [20]

Introduction 9 / 70

2. Proposed Weight Initialization
for ReLU Networks

Proposed Weight Initialization for ReLU Networks 10 / 70

Motivation

Figure 3: Example of deep and narrow FFNN with ReLU

Crucial for finite element basis functions construction [3].

Sparse polynomial approximation [4, 5].

Hard to train the networks. Why?

Proposed Weight Initialization for ReLU Networks 11 / 70

Motivation

ReLU Neural Network

A ReLU neural network is a neural network where the activation function
in each layer is the ReLU.

Dying ReLU Problem

The dying ReLU is a kind of vanishing gradient, which refers to a problem
when ReLU neurons become inactive and only output 0 for any input.

Numerous methods have been proposed to address the problem.

Modifying network architectures [7].

Applying various normalization techniques [8].

Proposing weight initialization method [9, 10, 11].

Proposed Weight Initialization for ReLU Networks 12 / 70

Prior Methods

Xavier Normal Initialization (X. Glorot & Y. Bengio, 2010) [9]

For each ℓ = 1, . . . , L,

Wℓ ∼ N (0,Var(Wℓ))

Var(Wℓ) =

√
2

nin + nout

with nin, nout are the number of nodes of previous layer(input) and
following layer, respectively.

Enables stable learning in shallow networks.

Unsuitable for nonlinear activation functions like ReLU.

Proposed Weight Initialization for ReLU Networks 13 / 70

Prior Methods

He Normal Initialization (K. He et al., 2015) [12]

For each ℓ = 1, . . . , L,

Wℓ ∼ N (0,Var(Wℓ))

Var(Wℓ) =

√
2

nin

with nin, nout are the number of nodes of previous layer(input) and
following layer, respectively.

Suitable for nonlinear activation functions like ReLU.

Perform worse with Sigmoid or Tanh than with Xavier initialization.

Proposed Weight Initialization for ReLU Networks 14 / 70

Prior Methods

Orthogonal Initialization (Saxe et al., 2014) [13]

For each ℓ = 1, . . . , L, the weight matrix Wℓ is initialized to be orthogonal,
satisfying:

WℓTWℓ = I or WℓWℓT = I

Enhances learning speed.

High computational cost.

Proposed Weight Initialization for ReLU Networks 15 / 70

Prior Methods

Gaussian Submatrix Initialization (R. Burkholz et al., 2019) [11]

The weight matrices Wℓ ∈ RNℓ−1×Nℓ , are initially determined by a

submatrix Wℓ
0 ∈ R

Nℓ−1
2

×Nℓ
2 as

Wℓ =

[
Wℓ

0 −Wℓ
0

−Wℓ
0 Wℓ

0

]
,

where w ℓ
0,ij ∼ N (0, σ2

w ,l).

Applicable to shallow networks with arbitrary layer widths.

Learning challenges in extremely deep and narrow ReLU networks.

Proposed Weight Initialization for ReLU Networks 16 / 70

Prior Methods

Randomized Asymmetric Initialization (L. Lu et al., 2020) [10]

Let Pℓ be a probability distribution defined on [0,Mℓ] for some Mℓ > 0 or
[0,∞). Note that Pℓ is asymmetric around 0. At the first layer of ℓ = 1,
we employ the He initialization. For ℓ ≥ 2, and each 1 ≤ j ≤ Nℓ, we
initialize Wℓ

j as follows:

(i) Randomly choose kℓj in {1, 2, · · · ,Nℓ−1 + 1}.
(ii) Initialize (Wℓ

j)−kℓ
j
∼ N (0, σ2

ℓ I) and (Wℓ
j)kℓ

j
∼ Pℓ

Prevents the dying ReLU problem in deep networks.

Learning challenges in extremely deep and narrow ReLU networks.

Proposed Weight Initialization for ReLU Networks 17 / 70

Prior Methods

Zero initialization (J. Zhao et al., 2022) [14]

Hm is the Hadamard matrix. For ℓ ∈ 1, . . . , L

Wℓ =


I if Nℓ = Nℓ−1

I∗ if Nℓ < Nℓ−1

cI∗HmI∗,where m = ⌈log2 (Nℓ)⌉ and c = 2−(m−1)/2 if Nℓ > Nℓ−1

where I∗ is a partial identity matrix.

Enables training of extremely deep networks.

Slow convergence in training.

Proposed Weight Initialization for ReLU Networks 18 / 70

Proposed Method

Key Properties

Our proposed weight initialization method can be characterized by key
properties: orthogonality, positive entry predominance, and fully
deterministic.

To construct a proper initial weight matrix, we find a matrix W ∈ Rm×n

satisfying the following conditions:

(i) The set of all column vectors of W is orthonormal;

(ii) Wx has more positive entries for all x ∈ Rn
+;

(iii) W is a fully deterministic matrix.

Proposed Weight Initialization for ReLU Networks 19 / 70

Proposed Method

Firstly, we define Qϵ
m×m by the orthogonal matrix of a QR decomposition

of

Jϵ := J+ ϵI =


1 + ϵ 1 · · · 1
1 1 + ϵ · · · 1
...

...
...

...
1 1 · · · 1 + ϵ


m×m

,

where ϵ > 0 is a sufficiently small.

Proposed Weight Initialization Method (H. Lee et al., 2024) [15]

To initialize the weights of the neural networks we propose that

Wϵ
m×n =

(
Qϵ

m×m

)
Im×n

(
Qϵ

n×n

)T
.

Proposed Weight Initialization for ReLU Networks 20 / 70

Properties of the Proposed Initial Weight Matrix 1

Example of Our Initial Weight Matrix

For ϵ = 0.1 the proposed initial weight matrix Wϵ
m×n is computed

approximately as follows.

Wϵ
8×5 =



0.8618 −0.1415 −0.1413 −0.1413 0.3524
−0.1341 0.8626 −0.1374 −0.1374 0.3563
−0.1342 −0.1373 0.8626 −0.1374 0.3563
−0.1342 −0.1373 −0.1373 0.8626 0.3563
0.3559 0.3528 0.3528 0.3528 −0.6533
0.1598 0.1567 0.1567 0.1567 0.1506
0.1598 0.1567 0.1567 0.1567 0.1506
0.1598 0.1567 0.1567 0.1567 0.1506


.

The proposed weight initialization is fully deterministic, thus it is not
dependent on randomness.

Proposed Weight Initialization for ReLU Networks 21 / 70

Properties of the Proposed Initial Weight Matrix 2

Orthogonality

Let q1, . . . ,qm be the column vectors of Qϵ
m×m and q̂1, . . . , q̂n be the

column vectors of Qϵ
n×n. Then it holds that

(i) if m = n,
(Wϵ

m×n)
TWϵ

m×n = Wϵ
m×n(W

ϵ
m×n)

T = I,

(ii) if m > n,

(Wϵ
m×n)

TWϵ
m×n = In×n,

Wϵ
m×n(W

ϵ
m×n)

T = q1q
T
1 + q2q

T
2 + · · ·+ qnq

T
n ,

(iii) if m < n,

Wϵ
m×n(W

ϵ
m×n)

T = Im×m

(Wϵ
m×n)

TWϵ
m×n = q̂1q̂

T
1 + q̂2q̂

T
2 + · · ·+ q̂mq̂

T
m.

Proposed Weight Initialization for ReLU Networks 22 / 70

Properties of the Proposed Initial Weight Matrix 3

Lemma 1.

Let q1, . . . ,qm be the column vectors of Qϵ
m×m. Then it holds that

⟨q1, 1⟩ =
m + ϵ√

ϵ2 + 2ϵ+m
,

|⟨qj , 1⟩| ≤ ϵ for all j = 2, . . . ,m.

Recall that
Wϵ

m×n =
(
Qϵ

m×m

)
Im×n

(
Qϵ

n×n

)T
.

Proposition 2.

The entry sum of each column (resp. row) vector of Wϵ
m×n is almost the

same.

Proposed Weight Initialization for ReLU Networks 23 / 70

Properties of the Proposed Initial Weight Matrix 3

Theorem 3.

Let Wϵ ∈ RN1×Nx with sufficiently small ϵ be a given. Then it holds that
for all x ∈ RNx

1

Nx
⟨x, 1Nx ⟩ ≃

√
N1

Nx

1

N1
⟨Wϵx, 1N1⟩ .

Corollary 4.

Given that ϵ is sufficiently small. Then the angle θ1 between the one
vector 1 and x in RNx is nearly identical to the angle θ2 between the one
vector 1 and Wϵx in RN1 .

Wϵx has more positive entries for all x ∈ Rn
+.

Proposed Weight Initialization for ReLU Networks 24 / 70

Properties of the Proposed Initial Weight Matrix 3

Figure 4: This shows its effectiveness of positive signal propagation for each
weight matrices W ∈ R200×100. For 25 random vectors x ∈ R100, the entry values
of Wx are plotted. Here, the x-axis represents the indices of all entries.

Proposed Weight Initialization for ReLU Networks 25 / 70

Deep Network of Depth ℓ

In Deep Networks

Now we consider a deep network of depth ℓ with a linear activation
function and zero bias.

y = Wϵ
Nℓ×Nℓ−1

· · ·Wϵ
N1×Nx

x

=
(
Qϵ

Nℓ×Nℓ

)
INℓ×Nx

(
Qϵ

Nx×Nx

)T
x

= Wϵ
Nℓ×Nx

x

It means that regardless of the network’s depth, y satisfies Theorem 3 and
Corollary 4, provided that ϵ is sufficiently small.

Proposed Weight Initialization for ReLU Networks 26 / 70

Computational Complexity of the Method

Theorem 5.

Let {uj}1≤j≤m be defined by

u1 = 1+ ϵe1 ∈ Rm,

uj =

(
1−

⟨uj−1, 1+ ϵej⟩
⟨uj−1,uj−1⟩

)
uj−1 + ϵ(ej − ej−1) ∈ Rm

for each j = 2, . . . ,m.

Then j-th column vector of Qϵ
m×m is expressed as

1

∥uj∥
uj .

Through this theorem, the computational complexity of QR
decomposition is reduced from O(n3) to O(n2).

Wϵ is a fully deterministic matrix.

Proposed Weight Initialization for ReLU Networks 27 / 70

2-1. Computational Results

Proposed Weight Initialization for ReLU Networks 28 / 70

Comparison of ϵ Values

The figure below presents a distinct comparison of accuracy across
different values of ϵ, utilizing a small network composed of consecutively
16 and 12 hidden layers to observe the training accuracy on the MNIST
dataset at each iteration. We set ϵ = 0.1 empirically.

0 250 500 750 1000 1250 1500 1750
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai
ni
ng
 a
cc
ur
ac
y

MNIST

Proposed_eps0.01
Proposed_eps0.1
Proposed_eps0.5
Proposed_eps0.9
ZerO Init
Orthogonal Init
Xavier Init

Figure 5: Comparison of ϵ values for the MNIST dataset.

Proposed Weight Initialization for ReLU Networks 29 / 70

Dataset Size Independence

Table 1: This is a comparison of the validation accuracy for feedforward neural
networks (FFNNs) with various weight initialization methods. Here (·) represents
the number of nodes in a single hidden layer.

Proposed Weight Initialization for ReLU Networks 30 / 70

Dataset Size Independence

Table 2: This is a comparison of the validation accuracy for feedforward neural
networks (FFNNs) with various weight initialization methods. Best results are
marked in bold.

Proposed Weight Initialization for ReLU Networks 31 / 70

Depth Independence

Figure 6: Validation accuracy for FFNNs with ReLU activation is presented across
varying depths. (a) and (b) investigate networks where all hidden layers maintain
the same dimension.

Proposed Weight Initialization for ReLU Networks 32 / 70

Depth Independence

Figure 7: Validation accuracy for FFNNs with ReLU activation is presented across
varying depths. (c), (d), and (e) investigate networks consisting of a layer with 10
nodes and a layer with 6 nodes, repeated throughout the structure.

Proposed Weight Initialization for ReLU Networks 33 / 70

Width Independence

Figure 8: The y -axis (resp. x-axis) presents the number of nodes in the first
(resp. second) hidden layer. Each is trained on MNIST dataset for 10 epochs.

Proposed Weight Initialization for ReLU Networks 34 / 70

Width Independence

Figure 9: The y -axis (resp. x-axis) presents the number of nodes in the first
(resp. second) hidden layer. Each is trained on FMNIST dataset for 1 epoch.

Proposed Weight Initialization for ReLU Networks 35 / 70

Activation Function Independence

Table 3: A validation accuracy is presented for FFNNs with various activation
functions. The FFNN comprises 120 hidden layers with a layer of 10 nodes and a
layer of 6 nodes repeated 60 times each. Each is trained on MNIST (M) and
FMNIST (F) datasets for 10 epochs. The best results are marked in bold.

Proposed Weight Initialization for ReLU Networks 36 / 70

3. Proposed Weight Initialization
for Tanh Networks

Proposed Weight Initialization for Tanh Networks 37 / 70

Motivation

Tanh Neural Network

A tanh neural network is a neural network where the activation function in
each layer is the hyperbolic tangent function (tanh).

Xavier Normal initialization (X. Glorot & Y. Bengio, 2010) [9]

For each ℓ = 1, . . . , L,

Wℓ ∼ N (0,Var(Wℓ))

Var(Wℓ) =

√
2

nin + nout

with nin, nout are the number of nodes of previous layer(input) and
following layer, respectively.

Proposed Weight Initialization for Tanh Networks 38 / 70

Motivation

Zero-Centered Activation Problem

When using Xavier initialization in tanh neural networks, the outputs of
deeper layers tend to converge toward values extremely close to zero.

Figure 10: Difference between maximum and minimum activation values at each
layer when propagating 3, 000 input data through a 10, 000-layer tanh FFNN,
using Xavier initialization (Left) and the proposed initialization (Right).

Proposed Weight Initialization for Tanh Networks 39 / 70

Motivation

Motivation

This makes training difficult in deep tanh neural networks, forcing the
network to learn in shallower ones [16].

The expressivity of neural networks exponentially increases with
depth [17, 18].

The use of tanh neural networks has surged with the rise of
Physics-Informed Neural Networks (PINNs) [19].

We propose a robust initialization for tanh neural networks that enables
training across various network sizes.

Proposed Weight Initialization for Tanh Networks 40 / 70

The Derivation of the Proposed Method

Question

How to effectively propagate signals to deeper layers in a tanh network?

Simplified analysis of signal propagation in tanh FFNNs

Given an arbitrary input vector x = (x1, . . . , xn), the first layer activation
x1 = tanh(W1x) can be expressed component-wise as:

x1i = tanh
(
w1
i1x1 + · · ·+ w1

inxn
)
= tanh

((
w1
ii +

n∑
j=1
j ̸=i

w1
ij xj

xi

)
xi

)
.

For the k + 1-th layer, i = 1, . . . , n, this expression can be generalized as:

xk+1
i = tanh

(
ak+1
i xki

)
, where ak+1

i = wk+1
ii +

n∑
j=1
j ̸=i

wk+1
ij xkj

xki
.

Proposed Weight Initialization for Tanh Networks 41 / 70

The Derivation of the Proposed Method

Lemma 6.

For a fixed a > 0 define the function ϕa : R → R given as

ϕa(x) := tanh(ax).

Then, there exists a fixed point x∗. Furthermore,

(1) if 0 < a ≤ 1, then ϕ has a unique fixed point x∗ = 0.

(2) if a > 1, then ϕ has three distinct fixed points: x∗ = −ξa, 0, ξa such
that ξa > 0.

Proposed Weight Initialization for Tanh Networks 42 / 70

The Derivation of the Proposed Method

Lemma 7.

For a given initial value x0 > 0 define

xn+1 = ϕa(xn), n = 0, 1, 2,

Then {xn}∞n=1 converges regardless of the positive initial value x0 > 0.
Moreover,

(1) if 0 < a ≤ 1, then xn → 0 as n → ∞.

(2) if a > 1, then xn → ξa as n → ∞.

Proposed Weight Initialization for Tanh Networks 43 / 70

The Derivation of the Proposed Method

Proposition 8.

Let {an}∞n=1 be a positive real sequence, i.e., an > 0 for all n ∈ N, such
that only finitely many elements are greater than 1. Suppose that
{Φm}∞m=1 is a sequence of functions defined as for each m ∈ N

Φm = ϕam ◦ ϕam−1 ◦ · · · ◦ ϕa1 .

Then for any x ∈ R
lim

m→∞
Φm(x) = 0.

Therefore, to ensure that the initial weights satisfy the following
conditions:

(i) aki remains close to 1.

(ii) aki ≤ 1 does not hold for all N ≤ k ≤ L.

Proposed Weight Initialization for Tanh Networks 44 / 70

The Derivation of the Proposed Method

Proposed Weight Initialization Method (H. Lee et al., 2024) [20]

For each ℓ = 1, . . . , L,

Wℓ = Dℓ + Zℓ ∈ RNℓ×Nℓ−1 ,

Dℓ
i ,j =

{
1, if i ≡ j (mod Nℓ−1),

0, otherwise

Zℓ ∼ N (0, σ2
z),

Then ak+1
i follows the distribution:

ak+1
i ∼ N

(
1, σ2

z + σ2
z

n∑
j=1
j ̸=i

(
xkj

xki

)2
)
. (1)

Proposed Weight Initialization for Tanh Networks 45 / 70

Preventing Activation Saturation with σz Tuning

Corollary 9.

Let ϵ > 0 be given. Suppose that {an}∞n=1 be a positivef real sequence
such that only finitely many elements are lower than 1 + ϵ. Then for any
x ∈ R \ {0}

lim
m→∞

|Φm(x)| ≥ ξ1+ϵ

By Corollary 9, a too large σz causes activation saturation.

By Equation (1), a too small σz reduces activation values as the layer
depth increases.

Therefore, we experimentally found an optimal σz = α/
√
Nℓ−1, with

α = 0.085, that is neither too large nor too small.

Proposed Weight Initialization for Tanh Networks 46 / 70

Preventing Activation Saturation with σz Tuning

Figure 11: The activation values in the 1000th layer, with 32 nodes per hidden
layer, were analyzed using the proposed weight initialization method with σz

values of 0.0003, 0.015, 0.3, and 3. The upper row shows results for 3000 input
samples drawn from a standard normal distribution, while the lower row presents
results for samples drawn from a Beta distribution with parameters a = 2.0 and
b = 5.0.

Proposed Weight Initialization for Tanh Networks 47 / 70

3-1. Computational Results

Proposed Weight Initialization for Tanh Networks 48 / 70

Width Independence In Classification Task

Table 4: Validation accuracy and loss are presented for FFNNs with varying
numbers of nodes (2, 8, 32, 128, 512), each with 20 hidden layers using tanh
activation function. All models were trained for 20 epochs, and the highest
average accuracy and lowest average loss, computed from 10 runs, are presented.

Proposed Weight Initialization for Tanh Networks 49 / 70

Depth Independence in Classification Task

Table 5: Validation accuracy and loss are presented for FFNNs with varying
numbers of layers (3, 10, 50, 100), each with 64 number of nodes using the tanh
activation function. All models were trained for 40 epochs, and the highest
average accuracy and lowest average loss, computed from 10 runs, are presented.

Proposed Weight Initialization for Tanh Networks 50 / 70

Normalization in Classification Task

Table 6: Validation accuracy for a tanh FFNN with 50 hidden layers (32 nodes
each).

Proposed Weight Initialization for Tanh Networks 51 / 70

Dataset Efficiency in Classification Task

Table 7: Validation accuracy and loss for a 10-layer FFNN (64 nodes per layer)
trained on datasets of sizes 10, 20, 30, 50, and 100. Results show the highest
average accuracy and lowest average loss over 5 runs after 100 epochs.

Proposed Weight Initialization for Tanh Networks 52 / 70

Non-uniform Hidden Layer Dimensions

Table 8: (a) Validation loss for an FFNN with alternating hidden layers of 16 and
4 nodes, repeated 50 times, comparing four methods: Tanh with Xavier
initialization, Tanh with the proposed initialization, ReLU with He initialization +
BN, and ReLU with orthogonal initialization. (b) Validation loss for an
autoencoder with encoder-decoder layers of 512, 256, 128, and 64 units,
comparing the same four methods. (c) Same as (b), but on the FMNIST dataset.

Proposed Weight Initialization for Tanh Networks 53 / 70

Physics-Informed Neural Networks

A Physics-Informed Neural Network (PINN) [19] integrates physical
laws, such as PDEs, into the training process to ensure the model adheres
to these constraints. This approach allows PINNs to solve scientific
problems efficiently, even with limited data.

Total Loss Function

The total loss Ltotal is a weighted sum of all components:

Ltotal = λ1Ldata + λ2Lphysics + λ3Lboundary + λ4Linitial

where λ1, λ2, λ3, λ4 are weights to balance each term.

Proposed Weight Initialization for Tanh Networks 54 / 70

Physics-Informed Neural Networks

Example: Burgers Equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1]

with the Dirichlet boundary conditions and initial conditions

u(−1, t) = u(1, t) = 0, u(x , 0) = − sin(πx).

Figure 12Proposed Weight Initialization for Tanh Networks 55 / 70

Network Size Independence in PINN

Figure 13: A PINN loss is presented for FFNNs with varying numbers of
layers (5, 10, 20, 30, 40, 50, 60, 80) using the tanh activation function.

Proposed Weight Initialization for Tanh Networks 56 / 70

Network Size Independence in PINN

Figure 14: A PINN loss is presented for FFNNs with varying numbers of
layers (5, 10, 20, 30, 40, 50, 60, 80) using the tanh activation function.

Proposed Weight Initialization for Tanh Networks 57 / 70

Dataset Efficiency in PINN

Figure 15: Absolute error between the exact solution and the PINN-predicted
solution for the Diffusion equation with varying numbers of collocation
points (3000, 10000, 20000, 50000) using (upper row) Xavier and (lower row)
the proposed initialization. The FFNN has 30 hidden layers (32 nodes each) and
is trained for 300 iterations using Adam followed by 300 iterations using L-BFGS.

Proposed Weight Initialization for Tanh Networks 58 / 70

Dataset Efficiency in PINN

Figure 16: Absolute error between the exact solution and the PINN-predicted
solution for the Burgers’ equation with varying numbers of collocation
points (3000, 10000, 20000, 50000) using (upper row) Xavier and (lower row)
the proposed initialization. The FFNN has 30 hidden layers (32 nodes each) and
is trained for 300 iterations using Adam followed by 300 iterations using L-BFGS.

Proposed Weight Initialization for Tanh Networks 59 / 70

Dataset Efficiency in PINN

Figure 17: Mean absolute error between the exact solution and PINN-predicted
solution with varying numbers of collocation points. The FFNN has 30 hidden
layers (32 nodes each) and is trained for 300 iterations using Adam followed by
300 iterations using L-BFGS. The results are averaged over 5 experiments.

Proposed Weight Initialization for Tanh Networks 60 / 70

4. Future Works

Proposed Weight Initialization for Tanh Networks 61 / 70

Future Work

Major Topic

Proposed a method to determine an appropriate weight initialization for a
given activation function.

Activation function properties

1 f ∈ C 1(R)
2 f (−x) = −f (x), hence f (0) = 0

3 limx→±∞ f (x) = ±L for some L < ∞
4 f ′(x) > 0 ∀x ∈ R

Proposed Weight Initialization for Tanh Networks 62 / 70

Future Work

When using an activation function that satisfies certain conditions

(a) MNIST (b) Fashion MNIST

Figure 18: Validation accuracy of an FFNN with 3 hidden layers of 1024 nodes
each.

Future Work 63 / 70

Future Work

Training was conducted under the optimal learning rate setting.

(a) MNIST (b) Fashion MNIST

Figure 19: Validation accuracy of a feedforward network with 20 hidden layers of
128 nodes each, using an activation function satisfying the proposed conditions.

Future Work 64 / 70

References I

[1] Narkhede, Meenal V., Prashant P. Bartakke, and Mukul S. Sutaone.
(2022) A review on weight initialization strategies for neural
networks.” Artificial intelligence review 55.1: 291-322.

[2] Kumar, Siddharth Krishna. (2017) On weight initialization in deep
neural networks. arXiv preprint arXiv:1704.08863 (2017).

[3] He, J., Li, L., Xu, J., & Zheng, C. (2018). ReLU deep neural
networks and linear finite elements. arXiv preprint arXiv:1807.03973.

[4] Hanin, B., & Sellke, M. Approximating continuous functions by ReLU
nets of minimal width (2018). arXiv preprint arXiv:1710.11278.

[5] Yarotsky, D. (2017). Error bounds for approximations with deep ReLU
networks. Neural Networks, 94, 103-114.

Future Work 65 / 70

References II

[6] A. T. Puig, A. Wiesel, G. Fleury, and A. O. Hero, “Multidimensional
shrinkage-thresholding operator and group LASSO penalties,” IEEE
Signal Process. Lett., vol. 18, no. 6, pp. 363–366, Jun. 2011.

[7] Apicella, A., Donnarumma, F., Isgrò, F., & Prevete, R. (2021). A
survey on modern trainable activation functions. Neural Networks,
138, 14-32.

[8] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization.
arXiv preprint arXiv:1607.06450.

[9] Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and
statistics (pp. 249-256). JMLR Workshop and Conference
Proceedings.

Future Work 66 / 70

References III

[10] Lu, L., Shin, Y., Su, Y., & Karniadakis, G. E. (2019). Dying relu and
initialization: Theory and numerical examples. arXiv preprint
arXiv:1903.06733.

[11] Burkholz, R., & Dubatovka, A. (2019). Initialization of relus for
dynamical isometry. Advances in Neural Information Processing
Systems, 32.

[12] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision (pp. 1026-1034).

[13] Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks.
arXiv preprint arXiv:1312.6120.

Future Work 67 / 70

References IV

[14] Zhao, J., Schäfer, F., & Anandkumar, A. (2021). Zero initialization:
Initializing neural networks with only zeros and ones. arXiv preprint
arXiv:2110.12661.

[15] Lee, H., Kim, Y., Yang, S., & Choi, H. (2024). Improved weight
initialization for deep and narrow feedforward neural network. arXiv
preprint arXiv:2311.03733.

[16] Rathore, Pratik, et al. (2024) Challenges in training PINNs: A loss
landscape perspective. ICML2024.

[17] Poole, Ben, et al. (2016) Exponential expressivity in deep neural
networks through transient chaos.” Advances in neural information
processing systems 29.

[18] Raghu, Maithra, et al. (2017) On the expressive power of deep neural
networks.” International conference on machine learning. PMLR.

Future Work 68 / 70

References V

[19] Karniadakis, George Em, et al. (2021) Physics-informed machine
learning. Nature Reviews Physics 3.6.

[20] Lee, H., Choi, H., & Kim, H. (2024). Robust Weight Initialization for
Tanh Neural Networks with Fixed Point Analysis. arXiv preprint
arXiv:2410.02242.

Future Work 69 / 70

Thank you for your attention!

Future Work 70 / 70

	Introduction
	Proposed Weight Initialization for ReLU Networks
	Proposed Weight Initialization for Tanh Networks
	Future Work

