Weight Initialization Methods for FFNNs with Diverse

Activation Functions

Hyunwoo Lee
Korea Institute for Advanced Studys

May 28, 2025
2025 KIAS CAINS Workshop

Hyunwoo Lee (KNU) Weight Initialization Methods



© Introduction
© Proposed Weight Initialization for ReLU Networks
© Proposed Weight Initialization for Tanh Networks

@ Future Work



1. Introduction




Preliminary

e Let K pairs of training samples {(x;,y;)}X;, where x; € R is the
training input and y; € R is its corresponding output.

o Here, N, and N, are the number of nodes in the input layer and
output layer, respectively.

Feedforward Neural Network (FFNN)

xt = f(2) = FWX T +b) e RV forall =1,... L,

where x~1 € RNe-1 is the input feature of /-th layer, W¢ € RNexNe-1 s
the weight matrix, b’ € RM is the bias vector for each £ =1,..., L, and
f(+) is an element-wise activation function.

Weight Initialization

The weight initialization aims to set the initial values of {Wg}érzl such
that training is efficient and convergence is achieved.
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Preliminary

Why is weight initialization important for training neural networks [1, 2]?

Speeds Up Convergence

Improves Model Performance

Dataset Efficiency

Enables Training Across Various Architecture Sizes
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Preliminary

RelLU Activation Function

The RelLU activation function is an activation function defined as the
positive part of its argument:

f(x) = max(0, x)

10

-10 - 0 1

Figure 1: ReLU activation function
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Preliminary

Tanh Activation Function

The tanh (hyperbolic tangent) activation function is defined as:

eX —e X

f(X) = tanh(x) = m

L

___—/ -1

Figure 2: Tanh activation function
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Activation Function Preferences

Neural Networks Commonly Using ReLU

o Feedforward Neural Networks

@ Convolutional Neural Networks
@ Deep Residual Networks
°

Transformers

Neural Networks Commonly Using tanh

@ Recurrent Neural Networks
@ Long Short-Term Memory Networks
@ Autoencoders

@ Physics Informed Neural Networks

Weight initialization depends on activation function.
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Overview of Prior and Proposed Methods

Prior Methods on Weight Initialization for ReLU Neural Networks

@ Orthogonal initialization (Saxe et al., 2014) [13]

o He Initializaition (K. He et al., 2015) [12]

@ Gaussian submatrix initialization (R. Burkholz et al., 2019) [11]
e Randomized asymmetric initialization (L. Lu et al., 2020) [10]
@ Zero initialization (J. Zhao et al., 2022) [14]

Proposed method 1 (H, Lee, et al., 2024) [15]

Prior Method on Weight Initialization for Tanh Neural Networks

e Xavier Initializaition (X. Glorot & Y. Bengio, 2010) [9]

Proposed Method 2 (H, Lee, et al., 2024) [20]
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2. Proposed Weight Initialization
for ReLU Networks
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Figure 3: Example of deep and narrow FFNN with ReLU

@ Crucial for finite element basis functions construction [3].
@ Sparse polynomial approximation [4, 5].
@ Hard to train the networks. Why?
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RelLU Neural Network

A RelLU neural network is a neural network where the activation function
in each layer is the RelLU.

Dying ReLU Problem

The dying ReLU is a kind of vanishing gradient, which refers to a problem
when RelLU neurons become inactive and only output 0 for any input.

Numerous methods have been proposed to address the problem.

e Modifying network architectures [7].
@ Applying various normalization techniques [8].

e Proposing weight initialization method [9, 10, 11].
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Prior Methods

Xavier Normal Initialization (X. Glorot & Y. Bengio, 2010) [9]

Foreach/=1,...,L,

W¢ ~ N(0, Var(WY))

2
Var(W) = /o
mn ou

with nj,, noy: are the number of nodes of previous layer(input) and
following layer, respectively.

@ Enables stable learning in shallow networks.

@ Unsuitable for nonlinear activation functions like ReLU.
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Prior Methods

He Normal Initialization (K. He et al., 2015) [12]

Foreach /=1,...,L,

W* ~ N(0, Var(W¥))
Var(WZ) = i

Nin

with nj,, noyr are the number of nodes of previous layer(input) and
following layer, respectively.

@ Suitable for nonlinear activation functions like ReLU.

@ Perform worse with Sigmoid or Tanh than with Xavier initialization.
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Prior Methods

Orthogonal Initialization (Saxe et al., 2014) [13]

For each £ =1,..., L, the weight matrix W is initialized to be orthogonal,
satisfying:

WEOWE =1 or WAWET =

@ Enhances learning speed.

@ High computational cost.
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Prior Methods

Gaussian Submatrix Initialization (R. Burkholz et al., 2019) [11]

The weight matrices W¢ € RNe-1%Ne - are initially determined by a
. Ne—1 N,
submatrix W{ e R"z ¥ 7 as

w4 —We
{ 0 0
W= [—wg wf;]=

where w¢ .. ~ N(0,02 ).

i~ w,l

@ Applicable to shallow networks with arbitrary layer widths.

@ Learning challenges in extremely deep and narrow ReLU networks.
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Prior Methods

Randomized Asymmetric Initialization (L. Lu et al., 2020) [10]

Let P, be a probability distribution defined on [0, My] for some M, > 0 or
[0,00). Note that P, is asymmetric around 0. At the first layer of £ =1,
we employ the He initialization. For £ > 2, and each 1 < j < N, we
initialize W/ as follows:

(i) Randomly choose kf in {1,2,--- [ Nyp_1 +1}.
(i) Initialize (Wfi)fkf ~ N(0,021) and (Wff)kje ~ Py

@ Prevents the dying ReLU problem in deep networks.
@ Learning challenges in extremely deep and narrow RelLU networks.
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Prior Methods

Zero initialization (J. Zhao et al., 2022) [14]

Hp, is the Hadamard matrix. For £ € 1,...,L

| if Np= Np_1
W= if Np < Np_q
cl*Hp,1*, where m = [log, (N;)] and ¢ = 2=(m=1/2 i Ny > N,_4

where I* is a partial identity matrix.

@ Enables training of extremely deep networks.

@ Slow convergence in training.
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Proposed Method

Key Properties

Our proposed weight initialization method can be characterized by key
properties: orthogonality, positive entry predominance, and fully
deterministic.

To construct a proper initial weight matrix, we find a matrix W € R™*"
satisfying the following conditions:

(i) The set of all column vectors of W is orthonormal;

(i) Wx has more positive entries for all x € R7;

(iii) W is a fully deterministic matrix.
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Proposed Method

Firstly, we define Q¢ ,, by the orthogonal matrix of a QR decomposition
of

1+e€ 1 1
Je St 1 1+e --- 1
= €l = 3 . . . )
1 1 - 1+e€

mxm

where € > 0 is a sufficiently small.

Proposed Weight Initialization Method (H. Lee et al., 2024) [15]

To initialize the weights of the neural networks we propose that

anXn = ( fnxm) ImX"( ;Xn)T'
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Properties of the Proposed Initial Weight Matrix 1

Example of Our Initial Weight Matrix

For ¢ = 0.1 the proposed initial weight matrix W¢

approximately as follows.

© 0.8618
—0.1341
—0.1342
—0.1342
0.3559
0.1598
0.1598
| 0.1598

€ _
W8><5 -

—0.1415
0.8626
—0.1373
—0.1373
0.3528
0.1567
0.1567
0.1567

—0.1413
—0.1374
0.8626
—0.1373
0.3528
0.1567
0.1567
0.1567

“xn 1S computed
—0.1413  0.3524 T
—0.1374  0.3563
—0.1374  0.3563
0.8626  0.3563
0.3528 —0.6533
0.1567  0.1506
0.1567  0.1506
0.1567  0.1506 |

The proposed weight initialization is fully deterministic, thus it is not

dependent on randomness.

Proposed Weight Initialization for ReLU Networks 21/ 70



Properties of the Proposed Initial Weight Matrix 2

Orthogonality

Let q1,...,9mn be the column vectors of Q

cxm and qi,...,q, be the
column vectors of Q5. ,. Then it holds that

(i) if m=n,
(anxn)TanXn = anxn(wann)T =1,
(ii) if m > n,
(anxn)Tanxn = In><na
W (W )T = a1a] +a2a] + - +anq,,
(iii) if m < n,

anxn(anXn)T = lmxm
(anxn)TW6 = fllth

mXxn

e
2>
N
2>
=
d
+

2

3

o>

3
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Properties of the Proposed Initial Weight Matrix 3

Let qi,...,qm be the column vectors of QS,,,,- Then it holds that

m-—+e€

71 = T
a1, 1) Ve2 +2e+m

[{a;,1)| <€ forallj=2,...,m.

Recall that -
W$n><n = ( fnxm) Im><'1 (QZXn) .

Proposition 2.
The entry sum of each column (resp. row) vector of WS, is almost the

same.
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Properties of the Proposed Initial Weight Matrix 3

Let W€ € RMxNx with sufficiently small € be a given. Then it holds that
for all x € RNx

1 Ny 1
A ) = Sl (Wex, 1)

o

Corollary 4.

Given that € is sufficiently small. Then the angle 61 between the one
vector 1 and x in RNx s nearly identical to the angle 6, between the one
vector 1 and Wex in RMt,

W¢x has more positive entries for all x € R}
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Properties of the Proposed Initial Weight Matrix 3

Proposed weight matrix

Node value

o a0 seo

(a) W : Proposed, x : Gaussian

Proposed weight matrix

Node value

3 W0 200 3000 a0 5000
Index

(d) W : Prosoed, x : Uniform

Node value

Gaussian random weight matrix

Orthogonal weight matrix

Node value

] W0 2000 a0 4ok soo0
Index

(b) W : Gaussian, x : Gaussian

Gaussian random weight matrix

1 W0 00 a0 400 so0
Index

(c) W : Orthogonal, x : Gaussian

Orthogonal weight matrix

Node value

Node value

] 000 2000 3000 acbo 5000
Index

(e) W : Gaussian, x : Uniform

1] W0 2000 a0 4000 5000
Index

(f) W : Orthogonal, x : Uniform

Figure 4: This shows its effectiveness of positive signal propagation for each
weight matrices W € R200x190  For 25 random vectors x € R, the entry values
of Wx are plotted. Here, the x-axis represents the indices of all entries.
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Deep Network of Depth ¢

In Deep Networks

Now we consider a deep network of depth ¢ with a linear activation
function and zero bias.

J— € €
Y= VW, xnN,_q "'WN1><NXX
-
J— € €
— (QNEXNZ) INZXNX (QNXXNX) X
_ €
= WleNxx

o

It means that regardless of the network'’s depth, y satisfies Theorem 3 and
Corollary 4, provided that ¢ is sufficiently small.
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Computational Complexity of the Method

Let {uj}1<j<m be defined by

U1:1—|—661€Rm,
(uJ'_]_, 1+ eej>>
u=(1—2""_"“"\u_;+ele;—e_;)cR”
J ( (Uj—17uj—1> J (J J )
foreachj=2,...,m

Then j-th column vector of Q¢ is expressed as —

mXxm

Ju JII

@ Through this theorem, the computational complexity of QR
decomposition is reduced from O(n%) to O(n?).

@ W¢€ is a fully deterministic matrix.
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2-1. Computational Results
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Comparison of € Values

The figure below presents a distinct comparison of accuracy across
different values of ¢, utilizing a small network composed of consecutively
16 and 12 hidden layers to observe the training accuracy on the MNIST
dataset at each iteration. We set ¢ = 0.1 empirically.

MNIST

Training accuracy

—— Proposed_eps0.01

—— Proposed_eps0.1
Proposed_eps0.5

—— Proposed_eps0.9

—— ZerO Init

—— orthogonal Init

—— Xavier Init

[ 250 500 750 1000 1250 1500 1750
Iteration

Figure 5: Comparison of € values for the MNIST dataset.
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Dataset Size Independence

Entire dataset

Proposed Orthogonal Xavier He Zero Identity RAI GSM
Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100
MNIST (0) 882 885 881 887 8.6 877 879 8.1 881 888 88 891 88 882 871  89.4
FMNIST (0) 804 806 796 79 795 781 795 801 781 804 784 803 791 804 758 80
MNIST (512) 9.5 97.6 958 963 958 965 964 966 951 965 962 965 959 975 88 89.4
FMNIST (512) 845 851 844 854 845 845 842 851 845 846 848 849 849 852 783 803
MNIST (16) 922 94 88 90 835 86 772 855 601 842 387 405 91 921 29 77.1
FMNIST (16) 823 842 6L1  67.3 564 692 533 607 601 831 781 8L2 60 784 349 373
4 samples per class

Proposed Orthogonal Xavier He Zero Identity RAI GSM
Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100
MNIST (0) 555 541 291 397 261 405 231 387 511 508 542 535 276 438 261 456
FMNIST (0) 542  57.1 427 514 205 481 342 511 51 501 528 561 365 539 337 514
MNIST (512) 56.5 51.0  49.7  50.1 443 452 465 489 22 463 519 508 299 388 233 372
FMNIST (512) 467 556 51 56 54 546 51 56.8 371 504 452 534 487 562 451 536
MNIST (16) 51.2 529 225 317 187 263 20 25 9.1 103 96 103 137 251 119 188
FMNIST (16) 433 563 234 247 188 178 20 208 108 107 333 415 149 21 106 264

Table 1: This is a comparison of the validation accuracy for feedforward neural
networks (FFNNs) with various weight initialization methods. Here (-) represents
the number of nodes in a single hidden layer.
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Dataset Size Independence

2 samples per class

Proposed Orthogonal Xavier He Zero Identity RAI GSM
Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100
MNIST (0) 46.4 465 237 316 196 301 207 287 426 433 441 436 263 378 212 345
EMNIST (0) 491 503 383 433 314 417 275 386 43 461 455 427 36 40 382 447
MNIST (512) 307 371 338 363 327 331 303 301 272 334 459 454 385 424 377 4Ll
FMNIST (512) 46.8 462 45 48.4 434 447 424 512 347 438 442 478 388 399 401 426
MNIST (16) 443 415 197 236 166 216 193 222 101 11 9.6 9.5 112 228 125 226
FMNIST (16) 438 479 221 261 186 20 194 227 99 105 291 396 24 266 134 219
1 samples per class

Proposed Orthogonal Xavier He Zero Identity RAI GSM
Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100
MNIST (0) 371 382 206 239 201 369 254 338 97 33 126 124 191 236 231  27.4
FMNIST (0) 435 394 303 337 274 308 246 358 97 258 407 406 18 337 345 406
MNIST (512) 361 349 282 277 312 323 27 274 222 2908 392 403 325 293 316 366
FMNIST (512) 392 374 367 347 385 376 361 35 317 37 03 34 39 372 352 36
MNIST (16) 335 342 165 194 143 168 143 199 106 116 10 9.8 181 226 184 198
FMNIST (16) 35 342 187 229 161 168 198 228 103 105 7 7.2 137 197 159 219

Table 2: This is a comparison of the validation accuracy for feedforward neural
networks (FFNNs) with various weight initialization methods. Best results are
marked in bold.
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Depth Independence

10 25 50 100
Number of hidden layers

(a) MNIST

MNIST Fashion MNIST
'y .. 0.8
NS A
0.8 0.7
> | N S¥Swqeeszzzzoo >
[¥) =
8 206 -e- Proposed 10 nodes
5 =1 —m— Proposed 4 nodes
506 8 0.5 el -®- RAI 10 nodes
o o 1 R I U —m— RAI4 nodes
s - S -e- GSM 10 nodes
2 -®- Proposed 10 nodes = 0.4 —#— GSM 4 nodes
Boa4= Proposed 4 nodes : -@- Zer0 10 nodes
el -@- RAI 10 nodes 243 —m— Zer0 4 nodes
© —=— RAI 4 nodes ©
> -@- GSM 10 nodes =
0.2 —#— GSM 4 nodes 0.2
-@- Zer0 10 nodes
—— ZerO 4 nodes 0.1

10 25 50 100
Number of hidden layers

(b) Fashion MNIST

Figure 6: Validation accuracy for FFNNs with ReLU activation is presented across
varying depths. (a) and (b) investigate networks where all hidden layers maintain
the same dimension.
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Depth Independence

MNIST 40 layers MNIST 80 layers MNIST 120 layers
08 /—f 08
o) o)
e c
goe 3 o6
g g
s s
§oa §
- S o4
2 2
3 3
>02 e 202
— o
00l — 20 0 01
1 2z 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 8 10 1 2 3 a4 5 6 7 8 8 10
Epochs. Epochs Epochs
(c) MNIST 40 hidden layers (d) MNIST 80 hidden layers (e) MNIST 120 hidden layers

Figure 7: Validation accuracy for FFNNs with RelLU activation is presented across
varying depths. (c), (d), and (e) investigate networks consisting of a layer with 10
nodes and a layer with 6 nodes, repeated throughout the structure.
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Width Independence

64 128 256 512
16 32 64 128 256 512
10

24054 0.57 061 062 0:63 0.59 060 0.61 0.59
400
08

00

(a) Proposed () dentity (d) Xavier

61 128 256 512 64 128 256 512

(e) He (f) RAI (2) GSM (h) ZerO

Figure 8: The y-axis (resp. x-axis) presents the number of nodes in the first
(resp. second) hidden layer. Each is trained on MNIST dataset for 10 epochs.
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Width Independence

64 128 256 512

64 128 256 512

(a) Proposed (b) Orthogonal

16 32 64 128 256 512 128 256 512

(f) RAL

(¢) Identity (d) Xavier

64 128 256 512 64 128 256 512

(h) ZerO

Figure 9: The y-axis (resp. x-axis) presents the number of nodes in the first
(resp. second) hidden layer. Each is trained on FMNIST dataset for 1 epoch.
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Activation Function Independence

Proposed Orthogonal Xavier He Zero Identity RAI GSM
Datset M F M F M F M F M F M F M F M F
Tanh 1.1 100 143 99 110 99 1.7 99 103 99 270 99 161 100 123 13.6
Sigmoid 11.3 10.0 103 100 103 99 113 99 103 100 102 99 102 99 103 10.0
Selu 383 333 1.7 99 102 99 98 99 330 345 104 99 102 99 120 110
Gelu 83.6 68.1 655 100 112 100 113 109 762 65 113 100 11.0 340 13.1 344

Relu 86.7 765 113 100 113 10.1 11.3 99 89 694 113 100 11.3 100 113 8.6

Table 3: A validation accuracy is presented for FFNNs with various activation
functions. The FFNN comprises 120 hidden layers with a layer of 10 nodes and a
layer of 6 nodes repeated 60 times each. Each is trained on MNIST (M) and
FMNIST (F) datasets for 10 epochs. The best results are marked in bold.
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3. Proposed Weight Initialization
for Tanh Networks
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Tanh Neural Network

A tanh neural network is a neural network where the activation function in
each layer is the hyperbolic tangent function (tanh).

Xavier Normal initialization (X. Glorot & Y. Bengio, 2010) [9]

Foreach /=1,...,L,

W* ~ N(0, Var(W¥))

Var(WZ) = 1/#
Nin + Nout

with nj,, noyr are the number of nodes of previous layer(input) and
following layer, respectively.
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Motivation

Zero-Centered Activation Problem

When using Xavier initialization in tanh neural networks, the outputs of
deeper layers tend to converge toward values extremely close to zero.

Xavier Weight Initialization Proposed Weight Initialization
107 29 o 1

g 10722 - ad g
L 1073 o
[ Q
£ 1070 £
FRUS <
S 100 — s
D o nodes D
3 107107 64 nodes 3
= 10-124] —=— 32 nodes =

—=— 16 nodes .

0 2000 4000 6000 8000 10000 ) 2000 4000 6000 8000 10000

Layer Layer
(a) Xavier Initialization (b) Proposed Initialization

Figure 10: Difference between maximum and minimum activation values at each
layer when propagating 3,000 input data through a 10, 000-layer tanh FFNN,
using Xavier initialization (Left) and the proposed initialization (Right).
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Motivation

@ This makes training difficult in deep tanh neural networks, forcing the
network to learn in shallower ones [16].

@ The expressivity of neural networks exponentially increases with
depth [17, 18].

@ The use of tanh neural networks has surged with the rise of
Physics-Informed Neural Networks (PINNs) [19].

We propose a robust initialization for tanh neural networks that enables
training across various network sizes.
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The Derivation of the Proposed Method

How to effectively propagate signals to deeper layers in a tanh network?

Simplified analysis of signal propagation in tanh FFNNs

Given an arbitrary input vector x = (xi,...,x,), the first layer activation
! — tanh(W!x) can be expressed component-wise as:

n W-l-Xj
1 1 i
= tanh ( Whxy + -+ W,-nxn) = tanh ((W,-,— I E 1 >J<:)XI>
J:

J#i
For the k + 1-th layer, i = 1,..., n, this expression can be generalized as:
n k+1 k
xikJr:l = tanh ( k+1xk> where ,k+1 k+1 + Z
J#l
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The Derivation of the Proposed Method

For a fixed a > 0 define the function ¢, : R — R given as
¢a(x) := tanh(ax).

Then, there exists a fixed point x*. Furthermore,
(1) if0 < a<1, then ¢ has a unique fixed point x* = 0.

(2) ifa> 1, then ¢ has three distinct fixed points: x* = —¢,, 0, &, such
that £, > 0.
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The Derivation of the Proposed Method

For a given initial value xo > 0 define

Xpt1 = Qa(xn), n=0,1,2,....
Then {x,}°2; converges regardless of the positive initial value xo > 0.

Moreover,

(1) if0<a<1, then x, — 0 as n — oc.
(2) ifa>1, then x, — &5 as n — oc.
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The Derivation of the Proposed Method

Proposition 8.

Let {an}5°, be a positive real sequence, i.e., a, > 0 for all n € N, such
that only finitely many elements are greater than 1. Suppose that
{Pm}° 1 is a sequence of functions defined as for each m € N

O :¢amo¢am_1 O"'O¢al-

Then for any x € R
lim &, (x)=0.

m—o0

Therefore, to ensure that the initial weights satisfy the following
conditions:

(i) a¥ remains close to 1.
(i) a,’-‘ < 1 does not hold for all N < k < L.
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The Derivation of the Proposed Method

Proposed Weight Initialization Method (H. Lee et al., 2024) [20]

Foreach/=1,..., L,
Wf — DZ _|_ Zﬁ c ]RNgXNg_l7

D! — 1, ifi=j (mod Np_q),
o 0, otherwise

Z‘ ~ N(0,02),

Then af‘“ follows the distribution:

k+1 2, 2% Xjk :

att AN 1,0’2—{—0'25 <k> . (1)
j=1 Xi
J#i

Proposed Weight Initialization for Tanh Networks 45 / 70



Preventing Activation Saturation with o, Tuning

Corollary 9.

Let € > 0 be given. Suppose that {a,}°° ; be a positivef real sequence
such that only finitely many elements are lower than 1 + €. Then for any
x € R\ {0}

Jim [®m(x)] > &1+

@ By Corollary 9, a too large o, causes activation saturation.

e By Equation (1), a too small o, reduces activation values as the layer
depth increases.

Therefore, we experimentally found an optimal o, = /v N¢—1, with
a = 0.085, that is neither too large nor too small.
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Preventing Activation Saturation with o, Tuning

0.0003 0.015 0.3 3
2500
12000 6000 40000
35000
10000 2000 5000{
30000
8000 1500 4000 25000
6000 3000 20000
1000
4000 2000 15000
10000
2000 500 1000 s000!
0 0 o o P ETIEY
-4 =2 0 2 4 ~1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 -1/00-075-050-0.25 0.00 0.25 050 075 100
0.0003 0.015 0.3 3
2000 f e
14000 6000
1750 o0 40000
12000 |
1500 35000
10000 30000
1250 4000
2000 1000 25000
5000 30001 20000
750 2000 15000
4000 500 10000
2000 250 1000 5000
L ] 3 a 2 3 0.1/00-0.75-0.50-0.25 000 0.25 0.50 0.75 100 ~1.00-0.75-0.50-0.25 0.00 0.25 050 0.75 1.00

Figure 11: The activation values in the 1000t" layer, with 32 nodes per hidden
layer, were analyzed using the proposed weight initialization method with o,
values of 0.0003, 0.015, 0.3, and 3. The upper row shows results for 3000 input
samples drawn from a standard normal distribution, while the lower row presents
results for samples drawn from a Beta distribution with parameters a = 2.0 and
b=5.0.
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3-1. Computational Results
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Width Independence In Classification Task

2 Nodes 8 Nodes 32 Nodes 128 Nodes 512 Nodes

Dataset Method
Accuracy Loss  Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
MNIST Xavier 49.78 1.632 68 0.958 91.67 0.277 95.45 0.154 97.35 0.087
Proposed 62.82 1.185 77.95 0.706 92.51 0.255 96.12 0.134 97.96 0.067
EMNIST Xavier 42.89 1.559 68.55 0.890 81.03 0.533 86.20 0.389 88.28 0.331
Proposed 51.65 1.324 71.31 0.777 83.06 0.475 87.12 0.359 88.59 0.323
CIFAR-10 Xavier 32.82 1.921 43.51 1.608 48.62 1.473 47.58 1.510 5171 1.369
B Proposed 38.16 1.780 47.04 1.505 48.80 1.463 48.51 1471 52.21 1.359
CIFAR-100 Xavier 10.87 4.065 18.53 3.619 23.71 3.301 23.83 3.324 17.72 3.672

Proposed 15.22 3.818 23.07 3.350 24.93 3.237 2491 3.240 22.80 3.435

Table 4: Validation accuracy and loss are presented for FFNNs with varying
numbers of nodes (2, 8,32,128,512), each with 20 hidden layers using tanh
activation function. All models were trained for 20 epochs, and the highest
average accuracy and lowest average loss, computed from 10 runs, are presented.
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Depth Independence in Classification Task

Dataset Method 3 Layers 10 Layers 50 Layers 100 Layers
Accuracy Loss  Accuracy Loss Accuracy Loss Accuracy Loss
MNIST Xavier 95.98 0.130 96.55 0.112 96.57 0.123 94.08 0.194
Proposed 96.32 0.123 97.04 0.102 96.72 0.109 96.06 0.132
EMNIST Xavier 85.91 0.401 88.73 0.319 87.72 0.344 83.41 0.463
Proposed 86.51 0.379 89.42 0.305 88.51 0.324 86.01 0.382
CIEAR-10 Xavier 4291 1.643 48.39 1.468 47.87 1.474 46.71 1.503
Proposed 45.05 1.588 48.41 1.458 48.71 1.461 48.96 1.437
CIEAR-100 Xavier 19.10 3.628 22.73 3.400 24.27 3.283 20.32 3.515
] Proposed 19.30 3.609 23.83 3.309 25.07 3.190 24.41 3.234

Table 5: Validation accuracy and loss are presented for FFNNs with varying
numbers of layers (3, 10,50, 100), each with 64 number of nodes using the tanh
activation function. All models were trained for 40 epochs, and the highest

average accuracy and lowest average loss, computed from 10 runs, are presented.
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Normalization in Classification Task
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Table 6: Validation accuracy for a tanh FFNN with 50 hidden layers (32 nodes
each).
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Dataset Efficiency in Classification Task

10 20 30 50 100
Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Xavier 3113 2.281 35.03 2.078 45.05 1.771 58.45 1.227 64.02 1.139
MNIST Xavier + BN 22.46 2.267 33.73 2.053 37.13 2.042 39.78 1.944 57.51 1.464
Xavier + LN 28.52 2.411 41.54 1.796 41.94 1.886 54.97 1.362 65.11 1.093
Proposed 37.32 2.204 46.79 1.656 48.60 1.645 61.54 1131 68.44 1.043

Xavier 36.16 2.320 41.69 1.814 53.86 1.459 64.53 1.140 63.58 1.048
Xavier + BN 35.44 2.136 38.58 1.925 40.16 1.819 53.93 1.728 59.78 1.237
Xavier + LN 34.94 2.362 37.90 1.793 53.27 1.470 59.50 1.198 62.01 1.073
Proposed 37.31 2217 49.25 1.651 55.19 1.372 66.14 1.057 67.58 0.914

Dataset Method

FMNIST

Table 7: Validation accuracy and loss for a 10-layer FFNN (64 nodes per layer)
trained on datasets of sizes 10, 20, 30, 50, and 100. Results show the highest
average accuracy and lowest average loss over 5 runs after 100 epochs.
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Non-uniform Hidden Layer Dimensions
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(a) FFNN (MNIST) (b) Autoencoder (MNIST) (c) Autoencoder (FMNIST)

Table 8: (a) Validation loss for an FFNN with alternating hidden layers of 16 and
4 nodes, repeated 50 times, comparing four methods: Tanh with Xavier
initialization, Tanh with the proposed initialization, ReLU with He initialization +
BN, and ReLU with orthogonal initialization. (b) Validation loss for an
autoencoder with encoder-decoder layers of 512, 256, 128, and 64 units,
comparing the same four methods. (c) Same as (b), but on the FMNIST dataset.
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Physics-Informed Neural Networks

A Physics-Informed Neural Network (PINN) [19] integrates physical
laws, such as PDEs, into the training process to ensure the model adheres
to these constraints. This approach allows PINNs to solve scientific
problems efficiently, even with limited data.

Total Loss Function

The total loss Liota is a weighted sum of all components:
Liotal = M Ldata + )\2£physics + )\3£boundary + A Linitial

where A1, A2, A3, A4 are weights to balance each term.
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Physics-Informed Neural Networks

Example: Burgers Equation

ou ou 9%u
E —+ 8X = VW, X € [_1,1], t e [0, ].]

with the Dirichlet boundary conditions and initial conditions

u(—=1,t) =u(l,t) =0, u(x,0) = —sin(mx).

V.
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Network Size Indep

Allen-Cahn (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 9.58e-04 8.16e-04 7.61e-04 1.06e-03  1.1e-03  1.24e-03  3.55e-03  1.81e-03
Xavier + BN 1.42e-03 8.17e-04 8.56e-04 7.07e-04 7.77e-04 8.87e-04 9.11e-04 2.15e-03
Xavier + LN 6.29e-01 1.77e-03 6.98e-04 1.27e-03 1.82e-03  6.65e-01  3.29e-01  5.86e-01
Proposed 9.21e-04 7.29¢-04 5.76e-04 5.29¢-04 5.37e-04 4.03e-04 4.73e-04 5.77e-04
Burgers (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 6.97e-03 1.11e-02  7.9e-03  9.71e-03  2.45e-02 2.65¢-02  6.5e-02  5.71e-02
Xavier + BN 8.07e-03  7.72e-03  6.24e-03 1.70e-02  1.50e-02 1.85e-02 2.91e-02  6.84e-02
Xavier + LN 3.89e-02 1.88e-02 9.48e-03 9.28e-03  2.46e-02 3.30e-02 6.91e-02 4.42¢-02
Proposed 6.19¢-03  5.08¢-03 5.28e-03 9.31e-04 3.56e-03 8.27e-04 3.43e-04 2.05e-03
Diffusion (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 2.52e-03 4.82e-03 9.69e-03 1.33e-02 2.08e-02 1.50e-02 2.92e-02  7.24e-02
Xavier + BN 2.89e-03 5.77e-03 1.05e-02 9.65e-03  2.76e-02 1.07e-02  9.07e-03  1.43e-02
Xavier + LN 1.72e-03  6.10e-03  8.04e-03 9.48e-03  2.14e-02  7.59e-03  2.05e-02 2.21e-02
Proposed 9.14e-04  2.59¢-03  2.40e-03 1.01e-03 1.97e-03 1.21e-03 1.12e-03 1.91e-03
Poisson (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 1.52e-02  2.87e-02 1.28e-01 9.82e-02 1.15e-01 1.37e-01 1.82e-01  2.55e-01
Xavier + BN 1.62e-02  2.02¢-02  8.72e-02  1.12e-01  2.45e-01  9.85e-02  1.00e-01  1.34e-01
Xavier + LN 5.39e-01 4.40e-02 1.34e-01 391 2.52e+02 2.58 9.79e+02 nan

Proposed 1.37e-02  1.70e-02 4.62e-02 2.43e-02 3.75¢-02 4.03e-02  6.07e-02  6.01e-02

Figure 13: A PINN loss is presented for FFNNs with varying numbers of
layers (5, 10, 20, 30, 40, 50, 60, 80) using the tanh activation function.
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Network Size Indep

Allen-Cahn (32 Nodes) 5 10 20 30 40 50 60 80
Xavier 3.13e-01 5.03e-02 3.64e-03 2.37e-03 4.03e-03 5.27e-03 1.73e-02  6.94e-01
Xavier + BN 4.05e-01 8.85e-04 8.4le-04 7.82e-04 9.97e-04 6.80e-04 9.34e-04 6.94e-01
Xavier + LN 3.31e-01 2.10e-03 5.99e-04 6.71e-04 1.49e-03 1.29e-03 3.31e-02  6.93e-01
Proposed 1.04e-03  6.92e-04 5.34e-04 4.26e-04 3.31e-04 3.52¢-04 3.85e-04 5.96e-04
Burgers (32 Nodes) 5 10 20 30 40 50 60 80
Xavier 1.12e-02  3.53e-03 2.72e-03  1.81e-03 7.60e-03 8.56e-03  9.86e-03  1.66e-01
Xavier + BN 5.88e-03  1.04e-03 1.79¢-03 2.80e-03 5.95e-03 3.66e-02  6.60e-02  1.66e-01
Xavier + LN 4.31e-02 1.21e-02 1.88e-03 7.22e-03 5.54e-03 8.46e-03 9.04e-03  4.86e-02
Proposed 4.14e-03 4.11e-03 1.58e-03 1.29¢-03 7.96e-04 5.85e-04 9.80e-04  1.47e-03
Diffusion (32 Nodes) 5 10 20 30 40 50 60 80
Xavier 1.69e-03  6.85e-03 7.63e-03 4.50e-03 8.98e-03 5.67e-03  6.33e-01 1.59
Xavier + BN 1.68e-03 2.66e-03 1.08e-02 6.00e-03 8.58e-03 6.60e-03  5.66e-02  1.69e+02
Xavier + LN 8.16e-04 2.85e-03 8.46e-03 4.57e-03 9.40e-03 1.04e-02 2.42e-01 1.67e+02
Proposed 2.89¢-04 8.03e-04 5.25e-04 5.07e-04 5.33e-04 6.17e-04 9.80e-04  1.53e-03
Poisson (32 Nodes) 5 10 20 30 40 50 60 80
Xavier 1.09e-02  1.33e-02  3.13e-02  7.69e-02 6.72e-02 8.90e-02 9.68e+02  1.46e+02
Xavier + BN 1.14e-02  1.47e-02 2.68e-02 3.55e-02 8.25e-02 8.97e-02 4.50e-02  7.75e-01
Xavier + LN 2.36e-02 2.18e-02 3.07e-02 3.85e-01 1.40 4.69 2.60 6.14
Proposed 9.63¢-03 8.29¢-03 1.41e-02 1.88e-02 1.65e-02 1.85e-02 1.73e-02  3.59e-02

Figure 14: A PINN loss is presented for FFNNs with varying numbers of
layers (5,10, 20, 30, 40, 50, 60, 80) using the tanh activation function.
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Dataset Efficiency in PINN
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o
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Figure 15: Absolute error between the exact solution and the PINN-predicted
solution for the Diffusion equation with varying numbers of collocation

points (3000, 10000, 20000, 50000) using (upper row) Xavier and (lower row)
the proposed initialization. The FFNN has 30 hidden layers (32 nodes each) and
is trained for 300 iterations using Adam followed by 300 iterations using L-BFGS.
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Dataset Efficiency in PINN

Figure 16: Absolute error between the exact solution and the PINN-predicted
solution for the Burgers' equation with varying numbers of collocation

points (3000, 10000, 20000, 50000) using (upper row) Xavier and (lower row)
the proposed initialization. The FFNN has 30 hidden layers (32 nodes each) and
is trained for 300 iterations using Adam followed by 300 iterations using L-BFGS.
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Dataset Efficiency in PINN
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Figure 17: Mean absolute error between the exact solution and PINN-predicted
solution with varying numbers of collocation points. The FFNN has 30 hidden
layers (32 nodes each) and is trained for 300 iterations using Adam followed by
300 iterations using L-BFGS. The results are averaged over 5 experiments.
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4. Future Works
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Major Topic

Proposed a method to determine an appropriate weight initialization for a
given activation function.

Activation function properties
Q f e CYR)
Q f(—x)= —f(x), hence f(0) =0
Q limy 100 f(x) = £L for some L < 0o
QO f(x)>0 VxeR
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Future Work

When using an activation function that satisfies certain conditions

MNIST: 20 Layers x 128 Nodes Fashion MNIST: 20 Layers x 128 Nodes
09
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Figure 18: Validation accuracy of an FFNN with 3 hidden layers of 1024 nodes
each.
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Future Work

Training was conducted under the optimal learning rate setting.

Fashion MNIST Val Acc (3x1024, decay=0.95)

MNIST Val Acc (3x1024, decay=0.95)
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Figure 19: Validation accuracy of a feedforward network with 20 hidden layers of
128 nodes each, using an activation function satisfying the proposed conditions.
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Thank you for your attention!
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