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Sobolev training

Sobolev training, first introduced in 2017 [1], refers to a training algorithm that

leverages derivative information of the target function.

Let f denotes the target function and g(x ;w) denotes a neural network with

parameter w .

Then, the conventional L2 loss function is defined as:

L(w) = Ex∼p

[
(g(x ;w)− f (x))2

]
≈ 1

N

N∑
i=1

(g(xi ;w)− f (xi ))
2

Sobolev training leverages the H1 (or higher-orders) loss function:

H(w) = Ex∼p

[
(g(x ;w)− f (x))2 + (∇xg(x ;w)−∇x f (x))

2
]

≈ 1

N

N∑
i=1

(g(xi ;w)− f (xi ))
2 + (∇xg(xi ;w)−∇x f (xi ))

2
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Sobolev training

Sobolev training has shown strong empirical success across various scientific

domains where derivative information is naturally available:

▶ Knowledge distillation [1].

▶ Physics-informed machine learning [2, 4].

▶ Tasks dealing with images (approximated derivative) [6].

So far, it has been (empirically) observed that

▶ Sobolev training results in a much smaller test error.

▶ Sobolev training makes networks learn more complicated features.

▶ Sobolev training accelerates the convergence of training dynamics.
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Sobolev training

▶ Sobolev Training results in a much smaller test error [1].

Figure: Test errors of Sobolev training compared to the L2 training.
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Sobolev training

▶ Sobolev Training makes networks learn more complicated features [5]:

Spectral Bias, Frequency Principle, Frequency Bias

Figure: Spectral bias.
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Sobolev training

F(f ′)(ξ) =

∫
e−2πiξt f ′(t)dt = e−2πiξt f (t)|∞−∞ +

∫
2πiξe−2πiξt f (t)dt

= 2πiξF(f )

∥g(x ;w)− f (x)∥Hs (Rn) = ∥F−1
[
(1 + |ξ|2)s/2F(g(x ;w)− f (x))

]
∥L2(Rn)

Figure: Changes in spectral bias [5].
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Sobolev acceleration

▶ Moreover, it has been demonstrated that Sobolev training can significantly

accelerate the convergence of the L2 error.

▶ For instance, [2] provided empirical evidence of such ‘Sobolev acceleration’.

Figure: Sobolev acceleration for PINNs.
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Sobolev acceleration

Since then, Sobolev acceleration has been repeatedly observed in the literature.

However, there is no theoretical evidence so far.

▶ We present a theoretical justification of Sobolev acceleration and quantify

the acceleration, covering both H1 and H2 norms, for a specific class of

ReLU-activated networks in the student–teacher framework.

▶ We illustrate our analysis through numerical examples, thereby

demonstrating its generalization to a practical scenario.

▶ We also apply Sobolev training to modern deep learning benchmark

problems, including denoising autoencoders and diffusion models, and

demonstrate both convergence acceleration and improved performance.

8 / 28



Sobolev training for linear models

As an illustrative example, we prove the Sobolev acceleration of gradient

descent for the linear model.

Proposition

Let X ∈ RN×d denote the given data matrix and y = Xw∗ + ϵ ∈ RN be

corresponding labels, where ϵ ∼ N (0, σ2I ). Consider the linear model

g(x ;w) = wT x. Define the following loss functions:

L(w) =
1

2

N∑
i=1

(wT xi − w∗T xi )
2 =

1

2
∥Xw − Xw∗∥2,

H(w) =
1

2

N∑
i=1

[
(wT xi − w∗T xi )

2 + λ∥w − w∗∥2
]
,

=
1

2
[∥Xw − Xw∗∥2 + λ∥w − w∗∥2].

Let κ(·) denote the condition number of a matrix. Then, κ(∇2
wH) < κ(∇2

wL).
Hence, Sobolev training improves the conditioning of the optimization problem

and accelerates the convergence of gradient descent for the linear model.
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Sobolev training for linear models

Proposition (Cont’d)

Let ŵL2 and ŵH1 be the optimal parameters that minimize L(w) and H(w),

respectively. Then Ex∼Pdata(ŵ
T
H1x − w∗T x)2 < Ex∼Pdata(ŵ

T
L2x − w∗T x)2, i.e.,

Sobolev training improves generalization error.

Sketch of proof.

We can easily compute the Hessians: ∇2
wL = XTX and ∇2

wH = XTX + λI .

Moreover, both optimal parameters are unbiased, i.e., E(ŵL2) = E(ŵH1) = w∗.

Bias-variance tradeoff: generalization error = Bias2 + Variance.

VarH1 =
∑d

i=1

σ2
i

(σi+λ)2
< d = VarL2 , where σi denotes the eigenvalues of

XTX .

Remark

Although the proposition relies on the idealized assumption that the true

parameter w∗ is known, it provides intuition for the Sobolev acceleration effect

and the generalization ability.
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Assumptions

Assumption (Two-layer ReLU network)

g(x ;w) =
∑K

j=1 σ(w
⊤
j x) where w = [w1, . . . ,wK ] ∈d×K and σ(t) = max(0, t)

with K ≥ 1 ReLU nodes in the hidden layer.

Assumption (Student-teacher setting)

There exists an unknown teacher parameter w∗ for which f (·) = g(·;w∗).

Assumption (Gaussian population)

The data distribution P is the standard Gaussian N(0, Id×d).

Definition

Let x1, x2, . . . , xN be i.i.d. samples from P. We define the population loss

functions as:

L(w) := E
(

1

2N

N∑
j=1

(g(xj ;w)− g(xj ;w
∗))2

)
,

J (w) := E
(

1

2N

N∑
j=1

∥∇xg(xj ;w)−∇xg(xj ;w
∗)∥2

)
, H(w) = L(w) + J (w).
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Previous result

We begin by recalling a result of Tian [3] for the gradient flow for L2-training

with single ReLU node (K=1):

Theorem (Theorem 5 in [3])

Consider the gradient flow ẇ = −∇wL(w) and let V (w) = ∥w − w∗∥2 denote

the squared error. Suppose that an initial parameter w 0 satisfies

∥w 0 − w∗∥ < ∥w∗∥, then dV
dt

= −(w − w∗)⊤∇wL < 0 and w t → w∗ as

t → ∞.

Figure: Convergent region
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Theoretical results

We show that by using the H1 loss function, the decay of V can be accelerated.

Theorem (H1 acceleration for K=1)

Consider the gradient flow ẇ = −∇wH(w). Suppose that ∥w 0 − w∗∥ < ∥w∗∥.
Then,

dV

dt
= −(w − w∗)⊤∇wH ≤ −(w − w∗)⊤∇wL − λ(θ)(∥w∥2 + ∥w∗∥2) < 0,

where λ(θ) = (2π − θ)−
√

θ2 + (2π − θ)2 cos2 θ ≥ 0 with θ denoting the angle

between w and w∗. Therefore, the decay of V is accelerated by using the

Sobolev loss function. Moreover, since the rate of acceleration λ(θ) is an

increasing function of θ ∈ [0, π/2), the convergence w t → w∗ is much more

accelerated when θ is large.
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Theoretical results

Theorem (Comparison of the optimization landscapes)

Let θ denotes the angle between w and w∗. Then we have

∇2
wL =

1

2
I − α(uu⊤ − cos(θ)vu⊤ + sin2(θ)I )(I − vv⊤),

∇2
wH = I − α(2uu⊤ − cos(θ)vu⊤ + sin2(θ)I )(I − vv⊤)

(1)

where α = ∥w∗∥
2π∥w∥ sin(θ)

, u = w∗

∥w∗∥ , and v = w
∥w∥ . Furthermore, if ∥w∗∥ sin(θ)

∥w∥ < π
2
,

then

κ(∇2
wH) =

1

1− 4α sin2(θ)
<

1

1− 3α sin2(θ)
= κ(∇2

wL).
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Theoretical results

Remark

Our result above gives an explicit impact of the H1 Sobolev training on the

optimization landscape. Even in the single ReLU node setting, we observe that

such an impact on the Hessian is nonlinear.

Remark (L vs. 2L vs. L+ J )

Minimizing L or 2L yields the same convergence rate, as both have identical

condition numbers. In contrast, Sobolev training (via L+ J ) improves the

condition number of the Hessian, thereby accelerating convergence.
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Theoretical results

We now demonstrate the same effect for higher-order derivatives.

Theorem (H2 acceleration)

Suppose g(x ;w) =
(
σ(w⊤x)

)2
, a two-layer network with a single ReLU2 node.

Consider the gradient flow ẇ = −∇wI(w), where

I(w) = I1(w) + I2(w) + I3(w) is the H2 population loss with I1 = L and

I2 = J . If ∥w 0 − w∗∥ < ∥w∗∥ then,

−(w − w∗)⊤∇wIj(w) < 0, for j = 1, 2, 3,

and hence, the decay of V = ∥w − w∗∥2 is accelerated under the gradient flow

minimizing the higher order Sobolev loss functions.
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Theoretical results

We now generalize the result to the ReLU networks with K > 1 hidden nodes.

Theorem
If the teacher parameters {w∗

j }Kj=1 form an orthonormal basis and a student
parameter W is initialized to be

wl = yw∗
1 + · · ·+ yw∗

l−1 + xw∗
l + yw∗

l+1 + · · ·+ yw∗
K = (y , . . . , x . . . , y),

under the basis of {w∗
j }Kj=1, where (x , y) ∈ Ω = {x ∈ (0, 1], y ∈ [0, 1], x > y},

then the following holds.

1. The student parameter wl converges to w∗
l under the gradient flow

ẇl = −∇wlH(W ), i.e., (x , y) converges to (1,0).

2. Near (x , y) = (1, 0), the gradient flows can be linearized to 2-d dynamical
systems:

L2 gradient flow :

(
ẋ
ẏ

)
L2

≈ −M3

(
x − 1
y

)
,

H1 gradient flow :

(
ẋ
ẏ

)
H1

≈ −2M3

(
x − 1
y

)
,

where λ1(M3) =
π
2
, and λ2(M3) =

π
2
(K + 1). Hence, M3 is positive

definite for all K, and the convergence is accelerated.
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Theoretical results

Theorem (Cont’d)

3. When x , y are initialized such that x = y = (0, 1], the L2 gradient flow

converges to the saddle point

x = y = x∗
L2 =

1
πK

(
√
K − 1− arccos( 1√

K
) + π), and the H1 gradient flow

converges to the saddle point

x = y = x∗
H1 =

1
2πK

(
√
K − 1 + 2π − 2 arccos( 1√

K
)) and

xL2(t) = (x(0)− x∗
L2)e

−K/2t and xH1(t) = (x(0)− x∗
H1)e

−Kt . Hence, the

convergence is accelerated.
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Theoretical results

Lastly, we extend the results by allowing a more general initialization.

Theorem

If the teacher parameters {w∗
j }Kj=1 form an orthonormal basis and the student

parameters are initialized as the symmetric Toeplitz matrix:

w1

w2

w3

...

wK


=



t1 t2 t3 · · · tK

t2 t1 t2 · · · tK−1

t3 t2 t1 · · · tK−2

...
...

...
. . .

...

tK tK−1 tK−2 · · · t1





w∗
1

w∗
2

w∗
3

...

w∗
K


,

then under the linearized L2 and H1 gradient flows, TL2 = (t1 − 1, t2, . . . , tK )

and TH1 = (t1 − 1, t2, . . . , tK ) follow

ṪL2 = −MTL2 , ṪH1 = −2MTH1

for a positive definite matrix M.
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Experiments

▶ Sobolev acceleration effect persists under empirical loss minimization using

SGD.

Figure: Comparison of convergence of L2 training(dashed lines) and H1 training(solid

lines).
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Experiments

▶ Sobolev acceleration for MLPs (2-64-64-64-1) with different activations.

▶ Target function: f (x , y) = sin(10(x + y)) + (x − y)2 − 1.5x + 2.5y + 1

▶ We train the networks by using the ADAM optimizer with a learning rate

of 1e − 4.

Figure: Results for various activation functions
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Experiments

▶ Sobolev acceleration for the Fourier feature networks and SIREN

(both 1-64-64-64-1).

▶ Target function: f (x) = x + sin(2πx4)

▶ We train the networks by using the ADAM optimizer followed by the

L-BFGS optimizer.

Figure: Results for various architectures.
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Experiments

▶ Sobolev acceleration for the autoencoder task.

▶ Both the encoder and decoder are implemented using the ResNet-18.

▶ The model is trained for 300 epochs, and the Adam optimizer is used with

a learning rate of 1e − 3.

Figure: Autoencoder for the ImageNet dataset.
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Experiments

▶ Sobolev acceleration for the denoising autoencoder task.

▶ A simple autoencoder comprising an encoder and a decoder, each

consisting of three convolution layers

▶ Trained with two types of additive noise: a Gaussian noise ϵ1 ∼ N(0, 1/4)

and a deterministic noise ϵ2 = 0.3 sin(2π(x + y)).

▶ Tested on amplified noise ϵ̃1 ∼ N(0, 1) and ϵ̃2 = 0.3 sin(20π(x + y)).

Figure: Denoising autoencoder for the MNIST dataset.
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Experiments

▶ Sobolev acceleration for the diffusion model.

▶ We trained a DDIM with a U-Net denoiser with 1,000 diffusion timesteps

and 20 sampling steps.

Figure: Diffusion model for the CelebA-HQ dataset.
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Summary

▶ Sobolev acceleration is a convergence acceleration phenomenon of training

neural networks.

▶ We provide the first theoretical evidence of Sobolev acceleration by

analyzing the Hessians of the loss landscapes and the gradient flow

dynamics of the student–teacher setting for ReLU networks.

▶ We present several empirical observations suggesting that Sobolev

acceleration is a general phenomenon across various deep learning tasks.

▶ We aim to extend the analysis of gradient dynamics in Sobolev training to

encompass a wider range of neural network architectures, including deeper

and more complex models
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Thank You!
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