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Sobolev training

Sobolev training, first introduced in 2017 [1], refers to a training algorithm that

leverages derivative information of the target function.

Let f denotes the target function and g(x; w) denotes a neural network with

parameter w.

Then, the conventional L? loss function is defined as:

L(w) = Exep [(80xiw) — F(0)] Z (i w) = £(x))°

= \

Sobolev training leverages the H' (or higher-orders) loss function:

H(w) = Exvp [((x: W) = F(x))” + (Vg (x; w) = Vo (x))’]

Q

2 \

Z (xiz w) = £(x1))* + (Vg (xi: w) = Vif (x1))?
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Sobolev training

Sobolev training has shown strong empirical success across various scientific

domains where derivative information is naturally available:
> Knowledge distillation [1].
» Physics-informed machine learning [2, 4].
> Tasks dealing with images (approximated derivative) [6].
So far, it has been (empirically) observed that
» Sobolev training results in a much smaller test error.
» Sobolev training makes networks learn more complicated features.

» Sobolev training accelerates the convergence of training dynamics.
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Sobolev training

» Sobolev Training results in a much smaller test error [1].

Logarithm of Test MSE
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Figure: Test errors of Sobolev training compared to the L2 training.
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Sobolev training

» Sobolev Training makes networks learn more complicated features [5]:

Spectral Bias, Frequency Principle, Frequency Bias
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Figure: Spectral bias.
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Sobolev training

FIENO = [ € (1) = & (O] + [ 2miee T (1)
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Figure: Changes in spectral bias [5].
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Sobolev acceleration

» Moreover, it has been demonstrated that Sobolev training can significantly

accelerate the convergence of the L? error.

> For instance, [2] provided empirical evidence of such ‘Sobolev acceleration’.
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Figure: Sobolev acceleration for PINNs.
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Sobolev acceleration

Since then, Sobolev acceleration has been repeatedly observed in the literature.

However, there is no theoretical evidence so far.

» We present a theoretical justification of Sobolev acceleration and quantify
the acceleration, covering both H' and H? norms, for a specific class of
RelLU-activated networks in the student—teacher framework.

» We illustrate our analysis through numerical examples, thereby
demonstrating its generalization to a practical scenario.

» We also apply Sobolev training to modern deep learning benchmark
problems, including denoising autoencoders and diffusion models, and
demonstrate both convergence acceleration and improved performance.
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Sobolev training for linear models

As an illustrative example, we prove the Sobolev acceleration of gradient
descent for the linear model.

Proposition
Let X € RN*? denote the given data matrix and y = Xw* + ¢ € R" be
corresponding labels, where e ~ N'(0,0°1). Consider the linear model

g(x; w) = w' x. Define the following loss functions:

(w'xi — w* T x)? = %||XW7XW*||2,

M\l—t

>
5

[W xi— w24+ A|lw—w* H]

= l\)\l—t

= SlIXw = Xw|* + Ajw — w”|].

Let k(-) denote the condition number of a matrix. Then, K(V3H) < k(V3L).
Hence, Sobolev training improves the conditioning of the optimization problem

and accelerates the convergence of gradient descent for the linear model.
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Sobolev training for linear models

Proposition (Cont'd)
Let w;2 and Wi be the optimal parameters that minimize L(w) and H(w),
respectively. Then Exp,,,,(Wix — w* T x)? < Exup,,, (Whx — w*Tx)?, e,

Sobolev training improves generalization error.

Sketch of proof.

We can easily compute the Hessians: V2L = X" X and VZH = XX + Al.
Moreover, both optimal parameters are unbiased, i.e., E(W;2) = E(Wy1) = w™.
Bias-variance tradeoff: generalization error = Bias® 4 Variance.

2
Vary = Zf’ 170 +>\)2 < d = Varj2, where o; denotes the eigenvalues of
XTX. O

Remark
Although the proposition relies on the idealized assumption that the true
parameter w™ is known, it provides intuition for the Sobolev acceleration effect

and the generalization ability.
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Assumptions

Assumption (Two-layer ReLU network)
glx;w) = ZjK:l o(w;" x) where w = [w, ..., wk] €”** and o(t) = max(0, t)

with K > 1 ReLU nodes in the hidden layer.

Assumption (Student-teacher setting)

*

There exists an unknown teacher parameter w* for which 7(-) = g(-; w

Assumption (Gaussian population)
The data distribution P is the standard Gaussian N(0, lyxq).

Definition
Let xi, x2,...,xn be i.i.d. samples from P. We define the population loss

functions as:

L(w) = (;\,ﬁ;(gxp —g(xiw ))2),

o

=

> Vg w) — VeglosiwIE ). H(w) = L) + T(w).

j=1

E\H
-
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Previous result

We begin by recalling a result of Tian [3] for the gradient flow for [*-training
with single ReLU node (K=1):

Theorem (Theorem 5 in [3])

Consider the gradient flow w = —V,,L(w) and let V(w) = ||w — w*||* denote
the squared error. Suppose that an initial parameter w® satisfies
Iw® = w*|| < flw*

t — 00.

, then & = —(w —w*) TV, L <0 and w' — w" as

[w—w"[| <

W

Convergent region

L]
W*

Successful samples

Figure: Convergent region
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Theoretical results

We show that by using the H! loss function, the decay of V can be accelerated.

Theorem (H! acceleration for K=1)

Consider the gradient flow v = —V,H(w). Suppose that ||w® — w*|| < ||w*].

Then,

dVv . s\ T *\ T 2 * (12

g = w=w) VuH < —(w = w') Vi L= A0)([w]” + [w]I") <0,
where \(0) = (27 — 0) — /62 + (27 — )2 cos2 0 > 0 with 6 denoting the angle

between w and w™. Therefore, the decay of V is accelerated by using the
Sobolev loss function. Moreover, since the rate of acceleration \(0) is an
increasing function of 6 € [0,7/2), the convergence w* — w* is much more

accelerated when 0 is large.
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Theoretical results

Theorem (Comparison of the optimization landscapes)

Let 6 denotes the angle between w and w*. Then we have

VoL = %I —a(uu" —cos(@)vu" +sin’*(O)1)(1 — w ),

(1)
VoH =1 —auu’ — cos(@)vu' +sin’(0)1)(1 —w')
where o = #ﬁs!‘n@’ u= ”z:”, and v = ﬁ Furthermore, if% < %
then
K(ViH) = — L < L (3o
v 1—4asin®(f) ~ 1—3asin®() v
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Theoretical results

Remark
Our result above gives an explicit impact of the H' Sobolev training on the
optimization landscape. Even in the single ReLU node setting, we observe that

such an impact on the Hessian is nonlinear.

Remark (L vs. 2L vs. L+ J)

Minimizing £ or 2L yields the same convergence rate, as both have identical
condition numbers. In contrast, Sobolev training (via £+ J) improves the

condition number of the Hessian, thereby accelerating convergence.
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Theoretical results

We now demonstrate the same effect for higher-order derivatives.

Theorem (H? acceleration)

Suppose g(x; w) = (cr(wa))2, a two-layer network with a single RelLU? node.
Consider the gradient flow w = —V,Z(w), where

I(w) = Ti(w) + To(w) + Zs(w) is the H* population loss with T, = L and

L =J. If|w® —w*| < ||w"| then,

—(w—w")V.Zj(w) <0, forj=1,2,3,

and hence, the decay of V = ||w — w*||? is accelerated under the gradient flow
minimizing the higher order Sobolev loss functions.
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Theoretical results
We now generalize the result to the ReLU networks with K > 1 hidden nodes.

Theorem

If the teacher parameters {w/" }JKzl form an orthonormal basis and a student
parameter W is initialized to be

wp=ywy 4+ ywg oxw] +ywilh A+ yw = (v, XL Y),

under the basis of {w;}/<;, where (x,y) € Q= {x € (0,1],y € [0,1],x > y},
then the following holds.

1. The student parameter w, converges to w;" under the gradient flow
W = =V, H(W), ie., (x,y) converges to (1,0).

2. Near (x,y) = (1,0), the gradient flows can be linearized to 2-d dynamical

systems:
L? gradient flow : (X) ~ —Ms (X - 1) ,
V)2 y

H' gradient flow : (X) ~ —2M; <X - 1) ,
y H1 .y

where A\1(M3) = 5, and \y(Ms) = 5 (K +1). Hence, Ms is positive
definite for all K, and the convergence is accelerated.
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Theoretical results

Theorem (Cont'd)

3. When x,y are initialized such that x = y = (0, 1], the L® gradient flow
converges to the saddle point
x=y=xh=22(VK-1- arccos(ﬁ) + ), and the H* gradient flow
converges to the saddle point
x=y=xpu=5mx(VK—1+21— 2arccos(ﬁ)) and
x2(t) = (x(0) — x32)e X/ and xu1 (t) = (x(0) — x;1)e*. Hence, the

convergence is accelerated.
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Theoretical results
Lastly, we extend the results by allowing a more general initialization.

Theorem
If the teacher parameters {w;" }JKZI form an orthonormal basis and the student
parameters are initialized as the symmetric Toeplitz matrix:

7%} t1 tr t3 vee tk Wy

W tr t1 [ ) cee tk—1 W2*

ws | — | t3 %3 t1 s tk—2 w3

WK tk tk—1 tk—2 - t Wi
then under the linearized > and H* gradient flows, Tj» = (t1 — 1, ta, . . ., tk)
and Typ = (tl -1, t,..., tK) follow

T = —MT;2, Ty = —2MT
for a positive definite matrix M.
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Experiments

» Sobolev acceleration effect persists under empirical loss minimization using
SGD.

(a) MSE loss (b) Error: lw —w™||3

(c) MSE loss

(d) Error: w—w™||2

10* 10° 10° 10! 10% 10° 10° 10* 102 10* 10° 10* 102 10%
# iterations # iterations # iterations # iterations
— Ir=0.1 Ir=0.001 — batch size=64 batch size=1024
- Ir=0.01 — Ir=0.0001 batch size=256
lines).

—— batch size=4096

Figure: Comparison of convergence of L? training(dashed lines) and H! training(solid
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Experiments

> Sobolev acceleration for MLPs (2-64-64-64-1) with different activations.
> Target function: f(x,y) =sin(10(x 4+ y)) + (x — y)?> — 1.5x + 2.5y + 1
» We train the networks by using the ADAM optimizer with a learning rate

RelU Leaky-RelLU GelU Tanh Sine
=Ly 102 102 104 102
10% 10l
.
10t 10! | To 100 10"
i
\ 100 po-2 o
100 100 41\ Lo ho-2
e | — ho-3
o3
10-1 po=" 0-4
0-2 po-4
o>
o 20000 40000 o 20000 40000 [ 20000 40000 0 20000 40000 0 20000 40000
— L2 training Hltraning —— M2 traning

Figure: Results for various activation functions
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Experiments

» Sobolev acceleration for the Fourier feature networks and SIREN
(both 1-64-64-64-1).

> Target function: f(x) = x + sin(2wx*)

» We train the networks by using the ADAM optimizer followed by the
L-BFGS optimizer.

. Standard MLP Fourier Features SIREN

~ N

—— L2 Training H! Training

Figure: Results for various architectures.
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Experiments

» Sobolev acceleration for the autoencoder task.
» Both the encoder and decoder are implemented using the ResNet-18.

» The model is trained for 300 epochs, and the Adam optimizer is used with
a learning rate of 1e — 3.

L? Reconstructed H! Reconstructed

Original Image

—— L2 Training
10t H1 Training
« 1072
o]
o
] Original Image L2 Reconstructed H! Reconstructed
K 2ae =\ 1 AV =y 8
1072 \ ¥ ' / \
104 o
&
0 50 100 150 200 250 300 k

Iteration

Figure: Autoencoder for the ImageNet dataset.
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Experiments

> Sobolev acceleration for the denoising autoencoder task.

» A simple autoencoder comprising an encoder and a decoder, each

consisting of three convolution layers

> Trained with two types of additive noise: a Gaussian noise €1 ~ N(0,1/4)
and a deterministic noise €2 = 0.3sin(27(x + y)).

> Tested on amplified noise €1 ~ N(0, 1) and € = 0.3sin(207(x + y)).

Test errors Noisy input L2 reconstructed H! reconstructed

10 —

— H? (Sobolev training)

0 100 200 300 400 5 10 15 20 25 o 5 10 15 20 25 o s 10 15 20 25

Test errors Noisy input L2 reconstructed H? reconstructed

— 0
— H* (Sobolev training)

0 100 200 300 400 o 5 10 15 20 25

o 5 0 5 10 15 20

Figure: Denoising autoencoder for the MNIST dataset.
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Experiments

» Sobolev acceleration for the diffusion model.

» We trained a DDIM with a U-Net denoiser with 1,000 diffusion timesteps
and 20 sampling steps.

H?* Training

L2 Training

—— L2 Training
H? Training

b
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FID Score

[ 20

©
Iteration
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Figure: Diffusion model for the CelebA-HQ dataset.
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Summary

» Sobolev acceleration is a convergence acceleration phenomenon of training
neural networks.
> We provide the first theoretical evidence of Sobolev acceleration by

analyzing the Hessians of the loss landscapes and the gradient flow
dynamics of the student—teacher setting for ReLU networks.

> We present several empirical observations suggesting that Sobolev

acceleration is a general phenomenon across various deep learning tasks.

» We aim to extend the analysis of gradient dynamics in Sobolev training to
encompass a wider range of neural network architectures, including deeper

and more complex models
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Thank You!
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