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Molecular dynamics

What is molecular dynamics (MD)?

• Change in atomic positions over time:

𝑥𝑥 = 𝑥𝑥0 + 𝑣𝑣𝑡𝑡 +
1
2𝑎𝑎𝑡𝑡

2

• Velocity, v:
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• Acceleration, a:

𝐹𝐹 = 𝑚𝑚𝑚𝑚

Density functional theory (DFT)

Ionic bonding

Covalent bonding

Noble gases
HΨ(r1,r2,..rN) = EΨ (r1,r2,..rN)

• Accurate & general

• Low speed (<500 atoms)

Classical interatomic potentials

Quantum mechanical calculations

• High speed (millions of atoms)

• Limited to specific systems

𝑡𝑡 𝑡𝑡 + 𝑑𝑑𝑑𝑑

J. Manuf. Sci. Eng. Apr 2014, 136(2): 021015
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Density-functional theory (DFT)

Structure

Input:
Energy, wavefunction

Output:

Periodic boundary condition (PBC) 

Quantum mechanics

HΨ(r1,r2,..rN) = EΨ (r1,r2,..rN)

0.02 L = 6.02×1023 atoms

How can we simulate such a 
large number of atoms?

Typically, 100–200 atoms are used to perform 
MD simulations with DFT calculations.

But not exact solution. Using universally applicable approximations.



Machine-learning interatomic potentials (MLIPs)

MLIP

Machine learning 
model

Machine-learning interatomic potentials

Training set from 
DFT calculations

Target simulation

Small structures

Big structures
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DFT~ O(Natom
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Classical MD

MLIP ~ O(Natom) 

~ O(Natom) 

Energy = f(structure)



Atom 1
Relative 

coordinates

…

Eatom,1

Eatom,2

Eatom,N

Etot
Relative 

coordinates

…

Atom 2
Atomic energies

Total energy
(DFT)

Behler and Parrinello, PRL, 98, 146401 (2007)

Descriptor

Descriptor

Example descriptor: symmetry function

Gi = [Gi
radial,η1, Gi
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radial,η3, … Gi
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fc: cutoff function

→ Used as input vectors for neural networks predicting atomic energies.

Rotationally
invariant

2-body

3-body

Architectures of the first-developed MLIP

Fi = −dEtot/dri



MLIP is a data-driven simulation method
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• Sampling a training set determines the quality and application range of MLPs.

InP core

ZnSe shell

Bulk

Surface

Interface

Edge and vertex

0.58 nm 0.85 nm

S. Kang et al. ACS Mater. Au 2, 103 (2022)
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Training set generation
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Example: modeling HF etching process with MLIP
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Diverse sampling techniques / Time scale: ps scale

Time scale: ns scale

a-Si3N4 a-Si3N4 + HF

Training set generation (DFT)

Simulation (MLIP)

Simulation target

.

• HF etching of amorphous Si3N4 for 
semiconductor process

C. Hong et al. ACS Appl. Mater. Interfaces 16, 48457 (2024)



Foundation model (or universal MLIP)
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Training set Simulation

Kang et al. ACS Mater. Au (2022)

Kang* et al. ACS Catal. (2023)

Kang* et al. Nano Lett. (2024)

Kang et al. PRB (2020), Kang et al. npj Comput. Mater. (2022)
Kang* et al. JACS (2023)

Conventional approach: MLIPs for individual systems Recent approach: foundation model (big data)

Training set:

Simulation:

Batatia, Benner, Chiang, Elena, Kovács, Riebesell, Csányi* et al. 
arXiv:2401.00096 (2023)

Foundation
model



Extrapolation behavior of universal MLIP

Training set

.1• Materials Project DB

Prediction results

Water & ice Disordered structure

Organic liquid Etching simulation

SC BCC FCC

• Crystalline material: an ordered solid composed 
of atoms arranged in a periodic lattice.

Example:

Materials Project is a computational database 
containing 200,000 inorganic crystal structures.

.1 .1

Not inorganic Not crystal

arXiv:2401.00096 (2023), JCTC (2024), arXiv:2501.05211 (2025)



Benchmark test of foundation models
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Matbench Discovery benchmark test
• Energy error: non-listed compositions in Materials Project through substitution
• Thermal conductivity error

META (Facebook)

SNU (Prof. Seungwu Han)

Cambridge

Microsoft

DP technology
(China)

Google 
DeepMind

Orbital Material (start-up)

Ruhr-Universität Bochum



Equivariant graph neural network

x22 = σ(w112x11 + w122x12 + b1)

…

x21x11 w111

w114

w112
w113

x21 = σ(w112x11 + w112x12 + …)

Neural network Graph NN (massage passing NN) Equivariant GNN

Message from 1 to 2 = w112 ⨂ x12

Edge tensor, w112,lm = R(r12)Ylm(r12) 

w122

w112
x11

x12

x22

Edge
Node

x11

x12

x13 x14

w111

w112

w113
w114

x21 x11

x12

w112

r12

Radial term
(include trainable weights)

Spherical harmonics

For instance, when l = 1
Y1-1(θ, φ) = C sinθ sinφ→ y
Y10(θ, φ) = C cosθ→ z
Y11(θ, φ) = C sinθ cosφ→ x

Graph Graph Graph

Input Hidden Output

Input Hidden Output

Tensor



E(3)-equivariant neural network

E(3) group Network architecture

Rotation

Message
from node b to a

Clebsch-Gordon 
coeff.

Radial
part

Spherical
harmonics

Node
feature

Scalar (l=0) Vector (l=1) l=2

Feature vectors consist of tensors, in addition of scalars.

Edge tensor ⊗ Node tensor

E(3) = 3D Euclidean group, which comprises translations, 
rotations, and reflections (parity).

l = 0

Even parity (p = 1)Odd parity (p = -1)

l = 1

l = 2

Pseudo scalar (0o)

Vector (1o)

Scalar (0e)

Pseudo vector (1e)

2o 2e



Types of extrapolation made by graph neural network interatomic potentials (GNN-IPs)
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Compositional extrapolation

BaTiO3

(Trained)
SrTiO3

(Untrained)

Knowledge
transfer

Configurational extrapolation

Crystal
(Trained)

Amorphous
(Untrained)

Knowledge
transfer



H → Bi

Compositional extrapolation is well described by the embedding characteristics of GNN-IPs
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Visualization

SevenNet-0
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One-hot
encoding

Embedding
vector (feature)

NN
(trainable)

H

He

Li

…

All elements share most of 
parameters unlike 

descriptor-based models

BaTiO3

(Trained)
SrTiO3

(Untrained)
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Explaining compositional extrapolation

Chapter 11. Modelling Simul. Mater. Sci. Eng. 33 023301 (2025)



How to explain configurational extrapolation?
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Crystal
(Trained)

Amorphous
(Untrained)

Physical laws should be explicitly learned by MLIP to extrapolate in configurational space.
Then, which physical interaction?

Kinetic energy:

XC energy:

Coulomb energy:

Yoo, Lee, Jeong, Han*, et al. PRM 3, 093802 (2019)

Approximated 
to q1q2/r12



Role of the message-passing algorithm
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1st convolution 2nd convolution 3rd convolution

Node
features

Cutoff: RC

Effective cutoff = RC Effective cutoff = 2RC Effective cutoff = 3RC

• Typically, RC = 5~6 Å, No. of layers = 2~5

• Effective cutoff is 15 ~ 25 Å
Graph MLIPs

• Typically, RC = 5~6 ÅDescriptor MLIPs



Extrapolating Coulomb interactions using GNN-IPs
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Toy model

d

Configuration Ⅰ

Configuration Ⅱ
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Extrapolation

<SevenNet>

<MACE>

• 0.5 and −0.5 particles are placed randomly.
• Only Coulomb interactions are applied to the 

system non-periodically.
• Training set: d = 4, 5, 6, 7, 8 Å
• Cutoff radius (Rc) = 5 Å, 5 convolution layers
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Learning long-range forces from crystal structures

Rfix

Mg O

Mg O

Crystalline (fix)

Amorphous (free)
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Electrostatic interactions in disordered structures are predicted by the potential trained from the crystal structure.



Role of equivariance

19

x Rx

Descriptor 
(input)

Descriptor model = Invariant model

f(x) f(Rx)=

Hidden 
layers g(f(x)) g(f(Rx))=

Output Energy Energy=

Equivariant model

x Rx

f(x) f(Rx) = Rf(x)

RConvolution
layers

≠

Output Energy Energy=



Role of equivariance
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x

Descriptor 
(input) f(x)

Hidden 
layers g(f(x))

Output Energy

x

f(x)

Convolution
layers

Output Energy

Structural
representation

Energy 
regression

Structural representation + 
energy regression
at the same time

→ MLIP learns effective 
structural representation 
way as well

Invariant model Equivariant model



Charged medium vs Neutral medium
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• GNN-IP well predicts electrostatic interaction in the charged medium, but fails in the neutral medium.
• It can be related to the fact that the structural representation and energetics is separated in the neutral medium case.

Extrapolation Extrapolation



How graph neural networks extrapolate?
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Short range Long range

Element embedding,
Equivariance

Message-passing

Training set 

Eshort learned 
from diverse local 

orders in the 
training set

Short range

Long range

Elong learned from the extrapolated 
Coulomb interaction



Tests on universal MLIP, SevenNet-0
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• Coulomb term: extrapolate • Kinetic term: do not extrapolate

Ionic system Unary metallic system



Forgetting-aware fine-tuning of universal MLIPs

Space for fine-tuning

Pretrained 
parameters

Parameter space

Optimal 
space

Catastrophic forgetting Forgetting-aware fine-tuning methods

Fisher information matrix: 
importance of parameters 
to certain training set

Fisher information matrix 
are used as weights for 
parameters during training

Catastrophic forgetting occurs if we fine-tune ML 
model with no forgetting-prevention methods.

Elastic weight consolidation (EWC)

Replay



Fine-tuning for Li-electrolyte simulations
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Forgetting

Forgetting-
prevention

Replay+EWC

Epoch

Preventing forgetting for pretrained set Li diffusivity

MD stability

• Fine-tuning (FT) set: one MD trajectory of LPSC
J. Kim, J. Lee, Seungwu Han, S. Kang*, Youngho Kang*, et al. In preparation



Coarse-grained all-atom force field (CGAA-FF) formalism

Inter-grain force
(Finter)

Intra-grain force
(Finter)

→ New formalism that enables all-atom force 
predictions in coarse-grained energy model

Grain embedding Network architecture



Test of CGAA-FF

Test systems: Li-ion battery electrolyte Training performance Test simulation

- Energy RMSE = 4.96 meV atom–1

- Force RMSE = 0.201 eV Å –1

- Speed: 22 times improved
- Memory: 14 times improved

S. Kang. arXiv:2505.01058 (2025)



Summary
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1e −1e

Toy model DFT

Extrapolation of Coulomb interactions via GNN-IPs Theory for extrapolation of GNN-IP

Short range Long range

Element 
embedding

Message-passing,
Equivariance

Short range

Long range

S. Kang, J. Chem. Phys. 161, 244102 (2024) 

• Universal interatomic potentials based on GNN-IP models well extrapolate to untrained domain and configurations.

• Extrapolation capability of GNN-IPs originate from the extrapolation capability in Coulomb interactions, and enhanced 

representation from the equivariant features.
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