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Introduction

We present a new theory of machine learning.

¢ Machines learn a function when they succeed in computing it.

When do machines succeed?

¢ Machines succeed when they satisfy both the fruth condition and the belief
condition.



Machine Learning as Successful Computation

* Definition: Machines learn a function when they succeed in computingit.
=> Successful Computation vs. Mere Computation
* Machines succeed when they compute it without fail.

=> According to Godel (1992), computation is achieved without fail whenever
axiomatic proofis provided in a rich system.



Successful Computation and ML

There is a Turing machine M that can compute y for the function f(x1, X, -+, X,) when

the machine receives (x1, X2, -+, Xp) as input if and only if the mathematical formula
f(x1,%2,+++,x,) =y is provable in a rich system S. (Godel 1992)

¢ Inspired by Godel 1992 and Feferman 2006, we epistemically interpret successful
computation as “machine learning”.

=> Successful computation leads to machine learning
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Successfully Computable and Learnable
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"With the concept of computability, Turing has succeeded in giving an absolute definition
of an epistemological notion" (G6édel 1995)



Successful vs. Mere Computation

* Definition: Machines merely compute a function when they happen to compute it
under some crucial assumption in the system (without proof)

(ex) i.i.d. assumption (e.g. Vapnik 2000 or Valiant 1984)

=> Kim 2024 proves under what condition machines learn the true probability
without relying on the i.i.d. assumption.



The Success Criterion for Machines to Learn: Two Conditions

¢ 1. Truth Condition: machines are correct most of the time (not necessarily
perfectly correct)

¢ 2. Belief Condition: the machines are self-assured whenever they indeed satisfy the
truth condition

=> Under these conditions, machines attain computational success and thus
learning.



Machine Learning on the True Probability

* Definition: A true probability P(A;118;) is what collectively constitutes a
probability space, a triple (Q2, &, p) of a joint true probability p by the stochastic
data-generating process S;’s.

If machines learn the true probability, then I1(Asi118¢) = P(Ar11Br). (Kim 2024)

* If machines learn, then what they compute must be true to our world.



Truth Condition for Learning the True Probability

Truth Condition

* Definition: Machines are (precisely) correct when I1(Az1|8s) = P(Aw11B81)

¢ Machines satisfy the truth condition when limsup [I[1(Az1187) — P(Am1180)1 <€,

t—o0
Ye> 0.

=> Machines cannot be said to learn if they are wrong too (= infinitely) often.
=> This is the usual consistency condition in learning theory



First Motivation for the Truth Condition

* Why does the truth condition need to be asymptotic ?

=> When machines accidentally happen to return correct computation once or
twice, machines are not said to learn.

* (ex) a broken clock analogy

Theorem

Consider any machine forecast & € R[0,1]. If P(Ar11f8 1) # a at least for infinitely many t's
with t = n for some n < co along the stochastic path, then P(A;11|f8y) = a at somet* < n is
not equivalent to learning the true probability at t*. (Kim and Kang 2024)
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Second Motivation for the Truth Condition

* Why does the truth condition need to be precisely correct ?

=> If machines cannot learn precisely, machines cannot learn approximately
either.

(cf) floating point for 7

Theorem

Suppose that no machines can learn the true probability function P, denoted f,, after
processing training samples {X;}?2, . Then, no machines can assess any finite learning rule

fn,m (for n,m < oo) as either a good or bad approximation to the true probability [ . (Kim
and Kang 2024)
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What is Approximation?

* Definition: Machines do an approximation on the true target function f* by a
learning rule f;, ,, when machines compute the distance function ¢(f;, ,,(-), f*) <8
for a given small bound ¢ < co.

* Definition: A distance function is a function ¢ : ¥2 — [0,00) such that

O(frym X XY D AXHR L ) T AXER)D).
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What is Approximation? (Continued)

* Definition: A learning rule is any sequence of measurable functions, f, ,’s,
provided by machines, where each
fom EMxP'xE - VY
depends on the following data:

(1) the initial training samples of labeled data {(X;, Yl-)};?:1
(2) the unlabeled data {X;}"

i=n+1
(3) the random variable X+ for prediction, given that m > n for n, me Nu {0}.
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What is Approximation? (Continued)

* There are various measures to approximate the true probability P.
(1) Variational Distance: Vp(Q) = sup{|P(A) — Q(A)|: A€ o(2)}
(2) Brier Score: Bp(Q) = ¥ yex (P(0) — Q(0))?
(3) Hellinger Distance: Hp(Q) = Yyes (P(0) + Q) — 2(P(0) Q(0))?)

(4) Kullback-Leibler Divergence: Dk (P||Q) = ¥ yes P(0) log(%)
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Belief Condition for Learning the True Probability

Belief Condition

* Machines satisfy the belief condition when
IT dimsup [I1(As+1181) — P(Ar11 8| <€, Ve>0)=1

t—oo
whenever the true condition is satisfied.

=> Definition: Machines tolerate an error when
[T(As+118;) = P(As+118,) but TIHIT(As+1187) # P(A1189)}) >0

=> Machines cannotbe said to learn if they tolerate errors too (= infinitely) often.
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First Motivation for the Belief Condition

* Why do machines need the belief condition to learn, in addition to the usual (truth)
consistency condition?

=> We can construct a stochastic process whose subsequence satisfies the truth
condition but whose true underlying true probability machines do not learn.

(ex) A stochastic path where for any n> N €N, on | §] number of the periods #'s
where {X; = x} occurs, P(X; = x|8;_1) = a, while P(X; = x|B;—1) = § on the rest of the
periods for any x € {x,,..., x;} with a # B.
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Second Motivation for the Belief Condition

* According to Lewis 1980, subjective probability should be bound by objective
probability when the objective one is known.

* Likewise, belief condition should be bound by the fruth condition when the truth
condition is proven.

=> [t must be that IT ( the truth condition is satisfied ) = 1 when the truth condition
has been proven, notjust assumed.

* In other words, machines should prove the truth condition without relying on the
i.i.d. assumption, in order to learn the true probability.
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Extending to ML on General Functions

* For machines to learn any general functions from finite samples, machines should
extrapolate an infinite array of potential outcomes from a finite set of inputs,
inevitably introducing uncertainty.

=> Learning any general functions involves probability
=> To learn any general function, machines learn the true probability first.

* The truth condition for machines to learn a function f*:

with true probability P— one, limsup ¢ ( f, »({X; ;Zl,f* X)), Xona1)s

00 =1
F* Xms1)) <€,V €>0.
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