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The Standard Model (SM) of  particle physics
field content ↔︎ particles 

characterized by masses and charges 
Interactions described by a QFT Lagrange density

• The SM extremely successful (tested at the Large Hadron Collider 
(LHC) and many precision experiments — and still not falsified!) 

• The SM does not explain Dark Matter, neutrino masses, baryon 
asymmetry, the smallness of the Higgs mass, the strong CP problem, … 

• Extensions of the SM must be formulated and tested in experiments.
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Particle collisions in practice: LHC
• Energy: 13.6 TeV (run3) 

• collisions : ~3·107/s (run3) 

•  typical event file size: 1 MB 
 (ref: ATLAS fact sheet) 

• stored data: 104 TB/year 
(ref: ATLAS fact sheet) 

• Note I: events have to be highly pre-selected through 
triggers to allow storage. 

• Note II: “Interesting” physics events are a tiny subset 
of the data. Example: one Higgs is produced in every 
~1010 collisions
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How an event looks like  
(in practice; reconstructed CMS event)



Production and decay of  the colored resonances at hadron colliders

Colored resonances in various color representations which dominantly 
couple to the top sector of the Standard Model are predicted in 
Composite Higgs models (and also in other Standard Model 
extensions). 
 
The interaction Lagrangians we use read:

Lint,8 = �8 t̄ S8 t
<latexit sha1_base64="9l4Ip9LcIS2cZ6JqEEqKC97ajoo="></latexit>

Lint,6 = �6 t̄ S6PL tc + h.c.
<latexit sha1_base64="WIIA7WID1JEW9+ZoUR+/s1LyZlU="></latexit>
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Figure 1. Production of four top quarks via the QCD pair productions and the single production of
colored scalars.

2 Signal processes

In minimal CHMs with an underlying fermionic description [3, 4, 33], an electrically neutral

colour octet S8 emerges as a generic prediction. Half of the twelve promising models identified

in [33] further contain a colour sextet scalar S6 with charge 4/3. In the other models, the S8

can be accompanied by a stop-like colour triplet with charge 2/3 or a sextet with charge �2/3.

We do not study these states in this work however, because only the former can facilitate the

production of top quarks: Through partial compositeness interactions the S8 and S6 obtain

couplings to tt̄ and tt, respectively. We parameterize them as follows using a simplified model

ansatz:

L =
1

2
(DµS8)

TDµS8 � 1

2
m2

8 Sa
8Sa

8 + �8S
a
8 t̄ (i�5)t

a
3 t (2.1)

+ (DµS6)
†DµS6 � m2

6 S†
6S6 + �6

�
Ks

ij Ss
6 t̄iPLtcj + h.c.

�
(2.2)

Here ta3 = 1
2�a are the SU(3) generators in the fundamental representation and Ks

ij are the

Clebsch-Gordon coe�cients connecting a sextet to two triplets. The S8 is a pseudo scalar,

and the S6 couples to right-handed top quarks. In the following we will set m8 = m6 ⌘ mS

for simplicity.

In models with partial compositeness, the decays into top quarks typically dominate as

these couplings are proportional to the corresponding quark mass. Both states have sublead-

ing decays in CHMs: S8 ! gg, gZ, g� through the Wess-Zumino-Witten terms, and partial

compositeness-induced decays into lighter quarks for both S8 and S6. However, in the follow-

ing we assume Br(S8 ! tt̄) = 1 = Br(S6 ! tt) for simplicity. Both states then yield four top

quarks when pair or singly produced:

pp ! S8S8 ! tt̄tt̄ (2.3)

pp ! S8tt̄ ! tt̄tt̄ (2.4)

pp ! S6S
⇤
6 ! ttt̄t̄ (2.5)

These are the signal processes we target in this work. We show the corresponding Feynman

diagrams in Fig. 1. The S6 can be produced singly analogously to the octet, but we do not

study sextet single production in this work as we do not expect to gain new insights from it

compared to the octet.
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Current bounds from LHC searches

Figure 2. Comparison of single production and pair production of (top) colour octet scalars S8 and
(bottom) colour sextet scalars S6 with (left) total and (right) relative cross sections calculated at LO.
The vertical and horizontal dashed lines indicate the limits from recasts and validity of the narrow
width approximation, respectively. Since the single and pair production cannot be cleanly separated,
we use �(pp ! 4t;S8)� �(pp ! S8S8) as a proxy for single production, where “;S8” indicates that at
least one S8 has to occur (analogous for S6). This is only a good approximation if interference e↵ects
are small. MK: I’m very surprised by the di↵erent � limits from NWA, perhaps I’m missing a factor
2 or something...

1.5.2 Sextet S6

The implemented Lagrangian reads

Lint = 2
p
2(↵+ i�)S6K̄

s
6,ij t̄PLt

c + h.c., (1.5)

where K̄6 is the Clebsch-Gordon coe�cient, and ↵ = KUULR33,� = KUULI33. I set 2
p
2� = �,

↵ = 0 (the other way around does not work – why?).

Pair production is generated with generate p p > six six3⇠. Combined single and

pair production is more di�cult since no BSM coupling orders are implemented. The following

works: generate p p > six3 | six3⇠ > t t⇠ t t⇠. Surprisingly, if we put a multipar-

ticle six = six3 six3⇠ as required s-channel particle, only pair production is generated.

– 4 –
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Machine Learning applied to BSM searches:  4-top events from BSM colored resonances                                       
Event simulation and pre-selection: 

• Simulation chain: Feynrules → Madgraph5 → Pythia8 → Delphes3.4.1 
→Fastjet3.3.1 

• #events 
Signal: 6m events per benchmark mass (1.2 TeV - 2.5 TeV in 100 GeV steps) 
Background: 4t (4.2m), tth (70m), ttV (150m), ttVV (4.3m), VVV (48m) 

• basic selection cuts: 
- exactly 2 same-sign leptons 
- at least 3 b-tagged jets 
- at least 3 (more) jets 
- mild missing pT cut (20 GeV) 
- mild ST cut (400 GeV) 
- standard lepton isolation and rapidity criteria (ATLAS config)
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Data & data-pre-processing 

Kinematic data: 

We demand 2 leptons, 3 jets, 3 b-jets and construct from them 51 kinematic observables 
 

Jet images: 
 
For each event, we determine an angular maps in the following way: 

1. Set the center of the (𝞰,𝜙) plane as the midpoint between the two same-sign leptons. 

2. Determine the (𝞰,𝜙) map of the pT of (a) charged “jets”, ((b) neutral “jets”,) (c) di-leptons 
by binning objects of the respective class in a 50x50 grid and and summing the pT in each 
bin to obtain the pixel intensity 
→                                                 or

by

V (C,N,`)
image =

�
3 ⇥ 50 ⇥ 50

�
, (4.1)

where 3 denotes charged (C), neutral (N) particle images, and lepton (`) images, which are

shown in the third column in Figure 3. WP: The di↵erences in the shapes for the leptons can

be understood as follows: in case of the signal the two leptons stem from one S++. In case

of the background they come from di↵erent particles which gives a larger angular

One potential issue with this approach is that pile-up e↵ects could jeopardize the anal-

ysis, as the expected average number of pile-up hµi at the HL-LHC is O(200) collisions per

bunch crossing [37]. We refer to Ref. [32] for the semi-realistic examination on pile-up e↵ects,

and several methods to mitigate the contamination. Although charged particles can be poten-

tially cleaned up from pile-up by scrutinizing the longitudinal vertex information [38], neutral

particles cannot be treated the same way. For the conservative analysis, therefore, we also

consider the image data set excluding neutral particles whose data structure is represented

by

V (C,`)
image =

�
2 ⇥ 50 ⇥ 50

�
. (4.2)

The impact of excluding the neutral particle image will be discussed in section 5.

4.2 Kinematic Variables

After the basic selections described in Section 3, we consider two same-sign leptons, three

leading b-tagged jets, and three leading non-b-tagged jets to construct kinematic variables.

We do not utilize other inclusive jets as a part of analysis. The most basic kinematic variables

are four-momenta of the reconstructed objects

V (vis)
pµ

= {pµ(`1), pµ(`2), pµ(b1), pµ(b2), pµ(b3), pµ(j1), pµ(j2), pµ(j3)} , (4.3)

where `1, `2, bi, and ji denote two same-sign leptons, i-th leading b-tagged jets, and i-th

leading non-b-tagged jets respectively. The input dimension of the set of four-momenta is

therefore dim(V (vis)
pµ ) = 32.

Given the basic four-momenta information, we can construct higher level of kinematic

variables which often serve as e�cient learnable features for neural networks. We consider

following two sets of kinematic variables

V2-kin =
[

i 6=j

Mij [

[

i 6=j

�Rij , (4.4)

V5-kin =
[

i 6=j

Mij [

[

i 6=j

�Rij [

[

i

pT i [ { /ET , ST } , (4.5)

where Mij and �Rij denote an invariant mass and an angular distance between two recon-

structed objects i and j, pT i denote a transverse momentum of an object i, /ET denotes a

missing transverse energy, and ST is the scalar sum of transverse momenta of reconstructed

jets including two same-sign leptons.
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Figure 3. Distribution of jet and lepton images of background (left) and signal (right) processes,
where the scalar mass is given in parentheses. The final state signatures are discretised into 50 ⇥ 50
calorimeter grids within a region of �2.5  ⌘  2.5 and �⇡  �  ⇡. The origin of the coordinate
system is the centre of the two same-sign leptons. The columns show charged and neutral components
of the jets, as well as isolated leptons, respectively. The colourbar indicates the mean pT per pixel.

variables which often serve as e�cient learnable features for neural networks. We consider

the following set of kinematic variables

K =
[

i 6=j

Mij [

[

i 6=j

�Rij [

[

i

pT i [ { /ET , ST } , (4.3)

where Mij and �Rij denote the invariant mass and the angular distance between two recon-

structed objects i and j, pT i denotes the transverse momentum of an object i, /ET denotes

the missing transverse energy, and ST is the scalar sum of transverse momenta of the recon-

structed jets and the two same-sign leptons. We do not apply any normalization or other

preprocessing on the kinematic data.

4.3 Machine learning aspects

Using the jet images and kinematic data defined in the previous sections, we train neural

networks to di↵erentiate the signal from its SM backgrounds. We have implemented a number

of di↵erent networks which are described in detail and compared in Appendix A. For some of

the networks we only use part of the available data to assess which data sets yield the highest

discriminatory power:

– 10 –

Machine Learning applied to BSM searches:  4-top events from BSM colored resonances                                       
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overlaid jet images (main background and signal classes)

Machine Learning applied to BSM searches:  4-top events from BSM colored resonances                                       
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Figure 3. Jet images for background (right) and signal processes (left) where the parentheses indicate
the scalar mass in GeV. The three columns show the images of charged hadrons, neutral hadrons, and
the two isolated leptons. Each panel shows the average distribution of particles taken over all simulated
events.

signal and background jet images reveals that signal images are typically brighter, which

indicates a larger total pT . This brightness further increases as the scalar mass becomes

larger. In addition, for S6S6 signal events, the leptons are generally concentrated near � =

±⇡/2, whereas they are more widely dispersed in the S8S8 or S8tt̄ events. This di↵erence

arises because, for the S8S8 or S8tt̄, the same-sign leptons are produced from the decays of

di↵erent particles, resulting in greater angular separation. In contrast, in signal events for

S6S⇤
6 production, both same-sign leptons originate from either S6 or S⇤

6 , leading to a more

clustered distribution.

Based on the jet images and kinematic variables, we employ neural networks to separate

the signal from the SM backgrounds. Additionally, we extend our method to di↵erentiate

between the production channels of sextet and octet pNGBs, enabling a more precise identifi-

cation of these distinct processes. To achieve this, we utilize two neural network architectures.

The first is a simple multilayer perceptron (MLP) using kinematic variables K. As a more

advanced architecture, we employ a combination of an MLP on K with a convolutional neural

network (CNN) operating on jet images. The schematic network structure is shown in Fig. 4.

The two separate chains are interfaced to produce a combined output. This combination

proved to be more proficient than a pure CNN in ref. [24], but for brevity, we will refer to it

as just “CNN” in the following. The full network architecture is detailed in Appendix C.

Our data set is split into three parts: the training set (80,000 events) and the validation

set (20,000 events) are comprised to equal parts of signal and background events with the

– 8 –
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Jet images

Manuel Kunkel (University of Würzburg) Uncovering BSM scalars with NNs Oct 6, 2023 (3rd TRP workshop) 16 / 25

single jet images are sparse

Machine Learning applied to BSM searches:  4-top events from BSM colored resonances                                       
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Machine Learning applied to BSM searches:  4-top events from BSM colored resonances                                       
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Figure 5. A schematic architecture of the neural networks used in this paper. The separate DNN
chain in the upper panel is used only when the kinematic variables are included.

5.3 Machine learning aspects

5.4 Convolutional neural networks

Using the jet images and kinematic data defined in the previous sections, we train neural

networks to di↵erentiate the signal from its SM backgrounds. We have implemented a number

of di↵erent networks which are described in detail and compared in ??. For some of the

networks we only use part of the available data to assess which data sets yield the highest

discriminatory power:

• K: Fully connected layer using only the kinematic data.

• IC`/ICN`: Convolutional neural network [? ] using charged (and neutral) hadron

images and lepton images.

• IC(N)` + K: CNN using charged (and neutral) hadron images and lepton images, com-

bined with a FC using the kinematic data. The flattened part of the CNN and the

kinematic FC are interfaced to produce a combined output.

The schematic structure of the best-performing network ICN`+K is illustrated in Fig. 5. The

networks are implemented in the PyTorch [? ] framework. Further details on the network

architectures are provided in ??.

– 10 –

Network: Convolutional Neural Network (CNN) combined with a 
simple multilayer perceptron (MLP)
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Machine Learning applied to BSM searches:  4-top events from BSM colored resonances                                       
Network: Convolutional Neural Network (CNN) combined with a 
simple multilayer perceptron (MLP) in more detail
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Figure 11. A schematic CNN architecture used in this article. The separate MLP in the right-upper
corner is used only when kinematic variables are included.

network using the cross entropy loss function,

L = �yk log pk � (1 � yk) log(1 � pk) , (C.1)

where events of class 0 and class 1 are labeled as y0 = 0 and y1 = 1, respectively. Training

is performed with the Adam optimizer whit a mini-batch size of 20 and a learning rate of

1 ⇥ 10�4. To avoide overfiting, we monitor the validation loss and train the model for up to

1000 epochs. If the validation loss does not improve within 30 epochs, training is stopped,

and the parameters corresponding to the epoch with the minimal validation loss are saved6.

C.2 Convolutional neural networks

Jun: (I did not apply L2 regularisation by setting the weight decay to zero.) CNNs are well-

suited for image recognition tasks, espectially when the final state is represented as images.

The input is a 3D image of ICN` with dimensions 3 ⇥ 50 ⇥ 50 where 3 indicates the number

of image layers as specified in Fig. 11.

We first apply two consecutive 2D convolutions, each with kernel size 3 ⇥ 3, stride of 1,

padding of 1. The number of feature maps increases from 4 in the first convolution to 8 in the

second. Each convolution is followed by batch normalization and the Rectified Linear Unit

(ReLU) [57] activation function. The resulting image size has dimensions 8 ⇥ 50 ⇥ 50.

In CNNs, pooling operation selects the most important pixel in each region of a feature

map, such as using max pooling to retain the maximum value or average pooling for the mean

value, while discarding the rest. This allows CNNs to reduce the input image dimensions and

extract key features at di↵erent scales through combined convolution and pooling operations.

6
Unless otherwise stated, the activation function, the type of optimiser, the loss function, the configuration

of an output layer, and the use of a validation set are the same for all other neural networks.

– 16 –
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Task 1: Distinguishing signal from background                                       

(a) mS = 1200 GeV (b) mS = 1800 GeV (c) mS = 2300 GeV

Figure 5. Receiver operator characteristic (ROC) curves comparing network performances for di↵er-
ent processes and mass points.

We now complete our search design by placing a cut on the neural network (NN) score.

One could determine this dynamically, e.g. such as to maximise a significance, but this tends

to lead to a very small number of expected background events in our case. We instead opt for

a fixed NN score cut, demanding 5 background events. Passing this cut are S signal events

and B = 5 background events. From these we calculate the significances for discovery and

exclusion by

Zdis ⌘

s

�2 ln

✓
L(B|S+B)

L(S+B|S+B)

◆
, Zexc ⌘

s

�2 ln

✓
L(S+B|B)

L(B|B)

◆
(5.1)

with the Poisson likelihood L(x|n) = xn

n! e
�x. When calculating the 2� exclusion bound [52],

we require: Finally we rescale the signal cross sections until we we reach

Zdis � 5, Zexc � 1.64 (5.2)

for discovery and exclusion, respectively, yielding an expected discovery reach �5� and an

expected upper limit �95.

The resulting limits for an assumed luminosity of 3 ab�1 at LHC with
p

s = 14 TeV are

shown in Fig. 6. As can be seen, colour octets and sextets can be discovered for m8  1.80 TeV

and m6  1.92 TeV based solely on pair production while, in absence of a signal, they can

be excluded for m8  2.00 TeV and m6  2.12 TeV. Single production, which depends on

the coupling �8, enhances the signal cross section, thus extending sensitivity to even higher

masses, as shown for the process pp ! ttS8 with �8 = 1.1 in Fig. 6 as an example. As

expected from the ROC curves in Fig. 5, the MLP and the CNN lead to comparable limits

for pair production2 while the CNN outperforms the MLP for S8tt.

The current exclusion limits on the masses of octet and sextet are m8  1.38 TeV and

m6  1.51 TeV, respectively, [53] as determined from recasts of ATLAS SUSY searches

2
We note that this implies that a separate analysis that excludes the pileup-ridden neutral jet images would

not have yielded new information for pair production.
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As a working point, we put a fixed NN score cut, demanding 5 background events to pass.  
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To obtain exclusion and discovery bounds on the cross-section, we resale the cross-
section until we reach                                      . 
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a fixed NN score cut, demanding 5 background events. Passing this cut are S signal events

and B = 5 background events. From these we calculate the significances for discovery and

exclusion by

Zdis ⌘

s

�2 ln

✓
L(B|S+B)

L(S+B|S+B)

◆
, Zexc ⌘

s

�2 ln

✓
L(S+B|B)

L(B|B)

◆
(5.1)

with the Poisson likelihood L(x|n) = xn

n! e
�x. When calculating the 2� exclusion bound [52],

we require: Finally we rescale the signal cross sections until we we reach

Zdis � 5, Zexc � 1.64 (5.2)

for discovery and exclusion, respectively, yielding an expected discovery reach �5� and an

expected upper limit �95.

The resulting limits for an assumed luminosity of 3 ab�1 at LHC with
p

s = 14 TeV are

shown in Fig. 6. As can be seen, colour octets and sextets can be discovered for m8  1.80 TeV

and m6  1.92 TeV based solely on pair production while, in absence of a signal, they can

be excluded for m8  2.00 TeV and m6  2.12 TeV. Single production, which depends on

the coupling �8, enhances the signal cross section, thus extending sensitivity to even higher

masses, as shown for the process pp ! ttS8 with �8 = 1.1 in Fig. 6 as an example. As

expected from the ROC curves in Fig. 5, the MLP and the CNN lead to comparable limits

for pair production2 while the CNN outperforms the MLP for S8tt.

The current exclusion limits on the masses of octet and sextet are m8  1.38 TeV and

m6  1.51 TeV, respectively, [53] as determined from recasts of ATLAS SUSY searches

2
We note that this implies that a separate analysis that excludes the pileup-ridden neutral jet images would

not have yielded new information for pair production.

– 10 –
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Task 1: Distinguishing signal from background                                       

Figure 6. Discovery reach (left) and exclusion limit (right) for di↵erent processes and networks. The
process pp ! ttS8 is dominated by a single production but also includes a portion of pair production.

[54, 55]. Notably, a recent study of color octet pair and single production [56] reached the

same conclusion and almost identical projected exclusion reach (m8  2.04 TeV). Ref. [56]

studies not only the same-sign lepton channel but also includes two signal regions with a

single lepton. They do not make use of machine learning techniques and instead use highly

boosted top tagging techniques. In particular, [56] use more advanced lepton isolation criteria

than the present work which avoid excessive signal loss for very highly boosted top decays in

which the leptons tend to be in proximity of the b quark. The lepton isolation criteria used

in the study presented here are more basic and not specifically tailored to highly boosted

top quarks, which results in notable signal loss when applying our preselection criteria. The

fact that we find an almost identical projected exclusion reach despite the lower preselection

e�ciency demonstrates the selection power of the neural network. It also indicates that

combining boosted top adapted lepton isolation, boosted top tagging and a machine learning

architecture as presented here is likely to allow for further improvement in sensitivity.

5.2 Identifying the signal process

We have shown so far that our neural networks are very proficient at separating the signal

events from the SM backgrounds and have determined up to which masses the signal could

be discovered with our method. We now go one step further and assume that an excess in

four top quark production which can be interpreted as one of our signal processes will be

discovered at the HL-LHC. There is a significant cross acceptance among S8S8, S6S⇤
6 , and

S8tt̄ This raises the question if we can successfully tell the signal processes apart with our

networks. In this section we illustrate how this can be done using a scalar mass of 1.8 TeV

as benchmark.

As a first step we use the results of the signal vs. background discrimination described in

the previous section to isolate for each process the signal events that the network identifies

with a high confidence. Specifically, we place a cut on the NN score such that the remaining

signal events have at least a significance of 5�. Next, we train our CNN architecture to

– 11 –
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Task 2: Distinguishing sextet pair production,  
octet pair production, and single production                    

                   Suppose LHC finds a 5𝜎 excess. Can one tell different models apart? 

We re-train the same network architecture for model discrimination between any combination of 
two models out of (octet pair production, octet single production, sextet pair pair production). For 
each pair we obtain the DNN score distributions.
Thomas Flacke Publications May 28, 2025

We then draw samples xi from this distribution where i = 1, . . . , N5� with N5� the number of events

needed for discovery. The goal is to determine whether they come from distribution j = 1 or 2. To

this end we construct the test statistic t from a log-likelihood ratio,

t = �2 ln
L1({xi})
L2({xi})

, Lj({xi}) =
Nj

5�Y

i=1

fj(xi)

for two hypotheses f1 and f2. By drawing many such sample sets and calculating the test statistic

for each, we obtain the distribution of t

Application for an F-5-9 (permanent resident) visa 4/ 3
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Task 2: Distinguishing sextet pair production,  
octet pair production, and single production                    

                   

(a) S8S8 vs S6S⇤
6 (b) S8tt̄ vs S8S8 (c) S8tt̄ vs S6S⇤

6

Figure 7. Separating two signal processes for a scalar mass of 1.8 TeV. The top row shows the NN
score distribution obtained from training the CNN to separate two signal processes. The second row
shows the distributions of the corresponding test statistics as defined in Eq. (5.3). MK: upload new
plots

In this article, we focussed on color sextet and color octet scalars, but the same methodol-

ogy and networks can be applied to BSM candidates of di↵erent spin and color representation

(for example a color singlet scalar or pseudoscalar, colored pseudo-scalars, vectors or axial

vectors)4, as long as they yield a ttt̄t̄ final state.
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4
These states are commonly present for example in composite Higgs models with an underlying fermionic

description. See [8] for a classification.
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• Many BSM models predict BSM colored states (in various color 
representations) which can decay into top quarks. 

• Current LHC searches for  4-top events constrain color octets (sextets) 
to be heavier than 1.2 TeV (1.3 TeV). 

• The studied combination of a DNN for kinematic information and a  
convolutional neural network for jet images provide excellent 
performance on 4-top final states with 2 same-sign leptons. 
For LHC at 3000 fb-1 we find a discovery potential up to m=1.8 TeV  
(m=1.92 TeV) for pair produced octet (sextet) scalars and an exclusion 
potential up to m=2.02 TeV (m=2.14 TeV). 

• We demonstrated that with our network architecture the number of 
events needed for discovery are sufficient to discriminate octet pair-
production, sextet pair-production and octet single-production.
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[Georgi, Kaplan (1984)]

An alternative solution to the hierarchy 
problem:  
• Generate a scale ΛHC<<Mpl through 

a new confining gauge group. 
• Interpret the Higgs as a pseudo-Nambu-

Goldstone boson (pNGB) of a 
spontaneously broken global symmetry of 
the new strong sector. 

The price to pay: 
• additional  resonances around ΛHC 

(vectors, vector-like fermions, scalars), 
• additional light scalars (pNGBs). 
• deviations of the Higgs couplings from their 

SM values of O(v/f).

Motivation for a composite Higgs 

Running of the new 
strong coupling

αs

mh

H

ΛHC=g*f~few TV

1019GeV

Mpl

eV

eV

125 GeV“Higgs”

O(few TeV)

f > 800 GeV

f

(𝜓𝜓)

T’

ρ, ρµ

𝝅’?

a’??
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http://inspirehep.net/record/193935


A wish list to construct and classify candidate models: 
Underlying models of a composite Higgs should 

• contain no elementary scalars (to not re-introduce a hierarchy 
problem), 

• have a simple hyper-color group, 
• have a Higgs candidate amongst the pNGBs of the bound states, 
• have a top-partner amongst its bound states (for top mass via partial 

compositeness), 

The resulting models have several common features: 
• All models contain hyper baryons beyond the top partners. 
• All models predict SM neutral, electroweak and colored pNGBs 

beyond the Higgs multiplet.

Composite Higgs Models: Towards underlying models

21

[Gherghetta etal (2015), Ferretti etal (2014), PRD 94 (2016) no 1, 015004, JHEP 1701, 094]

http://inspirehep.net/record/1266277
http://inspirehep.net/record/1272866
http://inspirehep.net/record/1411113
http://inspirehep.net/record/1493857


List of  "minimal" CHM UV embeddings

[JHEP1701,094]

[JHEP 2202, 208]

[Vecchi (2015)]

[Ferretti (2014)]

Additional model: SU(3) with 8x(F,F) [Appelquist,Ingoldby,Piai (2021)]

[JHEP1511,201]

http://inspirehep.net/record/1493857
https://inspirehep.net/literature/1981996
https://inspirehep.net/literature/1837068
http://inspirehep.net/record/1382164


Classification of  colored resonances in these models

[ 2404.02198]

2.7 Generalisation to SU(6)/Sp(6) and SU(3)⇥ SU(3)/SU(3)

For the SU(6)/Sp(6) case, the computation of the e↵ective Lagrangian follows the same

patterns as described above, with the only di↵erence in the broken and unbroken generators.

E↵ectively, this implies that colour charges of the non-octet states are interchanged: V6

and A3 (as well as ⇡3). The coe�cients of the various couplings and mass values, however,

follow the same results as above.

For the case SU(3)⇥ SU(3)/SU(3), the action of the symmetries are slightly di↵erent

in form. However, for this coset all vector and axial resonances, as well as the pNGBs,

transform as octets. Hence, the e↵ective interactions are the same as above, once the

non-octet states are removed.

3 Phenomenology

Models � (R, Y,B) ⇡ Vµ Aµ  di-quark

C1 M1-2 (R,� 1
3 ,

1
6 ) 80, 6�2/3 80, 10, 32/3 80, 6�2/3 8, 1, 3, 6 none

C2 M3-4, M8-11 (R, 23 ,
1
3 ) 80, 64/3 80, 10, 3�4/3 80, 64/3 3 ⇡6,Vµ

3 ,A
µ
6

C3 M5 (Pr,� 1
3 ,

1
6 ) 80, 32/3 80, 10, 6�2/3 80, 32/3 8, 1, 3, 6 none

C4 M6-7 (C,� 1
3 ,

1
6 ) 80 80, 10 80 8, 1, 3, 6 none

C5 M12 (C, 23 ,
1
3 ) 80 80, 10 80 3 none

Table 2: Properties of the spin-0 (⇡), spin-1 (Vµ, Aµ) and spin-1/2 ( ) lightest resonances

in the 12 models, grouped in 5 classes. Each class is determined by the properties of the

� species, listed in the second column by irrep type (R for real, Pr for pseudo-real and

C for complex). For the resonances, the colours indicate the baryon numbers, with black

for B = 0, red for B = ±1/3 and blue for B = ±2/3. In the last column we indicate the

bosons that can decay into a di-quark state (tt).

The twelve models under consideration allow us to predict the quantum numbers of the

lightest coloured resonances. Following the properties of the fermion species �, they can

be grouped into five classes, as shown in Tab. 2. For the fermionic states, the electroweak

charges depend on the configuration of the  fermions inside the chimera baryons, and

a full classification is possible, but beyond our purposes. In fact, we will assume here a

lattice and QCD inspired mass hierarchy, where the baryon-like states are heavier than the

spin-1 states, which are heavier than the pNGBs. Henceforth, the heavy baryons do not

have a direct relevance for the phenomenology of the spin-1 states, except for the fact that

their couplings can generate a direct coupling of the spin-1 resonances to a pair of tops via

the top partial compositeness mixing, as discussed in the previous section.

The coloured spin-1 resonances, therefore, can be produced via their QCD interactions

at hadron colliders. This leads to pair production for all types of states. The only one that

also features single-production is the vector colour octet, as it inherits a universal coupling

to all quarks via its mixing to the gluons. As the masses of the spin-1 resonances are

expected to be of the same order, we will first study the LHC limits on the vector colour

octet to determine the smallest allowed mass. Before doing that, however, it is important

– 11 –
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Figure 9. Receiver operator characteristic (ROC) curves comparing networks trained on S8S8, S6S⇤
6 ,

S8tt̄, tested across di↵erent signal types.
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bkg

DNN (1200) x 2 DNN (800) x 2 DNN (600) x 2

Output layer

Input layer

Figure 10. A schematic architecture of the simple multilayer perceptron (MLP) used in this paper.

C Neural network architectures

In this section, we outline the various network architectures we explored and assess their

performance through an analysis of the corresponding ROC curves. This evaluation focuses

on a dataset where the pNGB mass is mS = 400 GeV.

C.1 Simple multilayer perceptron

MLPs are simple structures that can easily be used when the input consists of the four-

momenta of reconstructed particles or combinations of kinematic variables. As shown in

Fig. 10, each neuron in a layer is fully connected to every neuron in the subsequent layer.

The implemented MLP consists of 6 hidden layers with a gradually decreasing number of

neurons from 1200 to 300, followed by an output layer. he output layer contains two neurons,

each representing a di↵erent class, such as a background and a signal. The values of these two

neurons are denoted by p̂k, where k = 0 or 1 represents the respective classes. We normalise

the values p̂k as pk = ep̂k/
P

ep̂k using a softmax function, where p0 represents the probability

that the network assigns the event to class 0, and similarly for p1 with class 1. We train the
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