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Introduction

Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.
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* Monge’s Formulation.

Clpv) = inf [ /X c(a:,T(a:))du(:z:)]
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Introduction

Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.

* Monge’s Formulation.

Clpv) = inf [ /X c(a:,T(:c))du(:c)]

Typ=v

 Kantorovich’s Relaxation.

Clu,v) == inf [ ]X xyc(:z:,y)dw(;c,y)].

mell(p,v)

Monge’s Optimal Transport [2]

where I1(u, v) = the set of joint probability distributions on X' X Y whose marginals are u and v.

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.



Introduction

Neural Optimal Transport

= Today, we focus on approaches for learning optimal transport maps with neural networks.

Neural Network T

x\y

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.



Fake Solutions in Neural OT




Fake Solutions in Semi-dual Neural OT

Optimal Transport Map (OTM)

= OTM[1, 2] learns the transport map T through a max-min formulation.

* v°denotes the c-transform of v, i.e., v¢(x) = irel{/(c(x, y) —v(y)).
y

\ Clv)=_ . [ /m (. y)dn(x. yﬂ ,

1 T v \ Semi-dual formulation for OT

< = sup [/ch(:c)d,u(x)—l—/

> 'UELl(I/) Yy

v(y)dV(y)]

c-transform of v

Static Optimal Transport

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022. 10
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.
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Optimal Transport Map (OTM)

= OTM[1, 2] learns the transport map T through a max-min formulation.

* v°denotes the c-transform of v, i.e., v¢(x) = irel{/(c(x, y) —v(y)).
y

\ Clv)=_ . [ /m (. y)dn(x. yﬂ ,

1 T v \ Semi-dual formulation for OT

< = sup [/ch(:c)d,u(x)—l—/

> 'UELl(I/) Yy

v(y)dV(y)]

c-transform of v

— Loz, = sup [ | it o Tota) = v (T dute) + | v¢<y>dv(y>].

Ve TQ

Static Optimal Transport

To: X = Y, x — arginf,cy [c(z,y) — v (y)]

Min-max objective between Transport map T and Potential v

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022. 11
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.
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Fake Solutions in Semi-dual Neural OT (SNOT)

=  The semi-dual approach is known to have the fake solutions.

inf L£(V,T) where L(V,T):=
sup bl (V,T) where L(V.T) fx

(. T(w) = V(T(@)idpla) + [ Vig)avly),

Yy

* When the optimal potential V* and the transport map T exists, it is well known that [1, 2]
T* € argmin L(V*,T)
T

* Thus, the pair (V*, T*) is the solution to the max-min problem.

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.
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Fake Solutions in Semi-dual Neural OT (SNOT)

=  The semi-dual approach is known to have the fake solutions.

(. T(w) = V(T(@)idpla) + [ Vig)avly),

sup inf L(V.T) where L(V,T) ::f
X =Y v

v T X

* When the optimal potential V* and the transport map T exists, it is well known that [1, 2]
T* € argmin L(V*,T)
T

* Thus, the pair (V*, T*) is the solution to the max-min problem.
= However, not all solutions of the max-min problem correspond to the true optimal potential and
transport map pair.

= The optimal solution of SNOT framework may fail to recover the correct optimal transport map.

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022. 13
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.



Fake Solutions in Semi-dual Neural OT

Fake Solution Example

= Assume that the source u and target v distributions are uniformly supported on

A=[-1,1]x{0} and B ={0}x[-1,1]

14



Fake Solutions in Semi-dual Neural OT

Fake Solution Example

Assume that the source u and target v distributions are uniformly supported on
A=[-1,1] x{0} and B ={0}x[—-1,1]
All transport map achieves the same transport cost:

1 2

| cle. T@)dut@) =5 | ) | ) du@) + 5 [ 11 yvly) = -

1

Since all transport maps yield the same cost, any transport map becomes an OT Map T”.

.« X~U
y~v
° T(x)

15



Fake Solutions in Semi-dual Neural OT

Fake Solution Example

= To analyze the fake solution, we first show that V* is the optimal Kantorovich potential

* 1 2
V*(y) = > lyll“.

owror () i=sup | [ Vo)t [

V(y)dV(y)}
Ves. Yy




Fake Solutions in Semi-dual Neural OT
Fake Solution Example

= To analyze the fake solution, we first show that V* is the optimal Kantorovich potential

* 1 2
V*(y) = > lyll“.

= This result follows from solving the inner problem of SNOT (dual OT problem) as follows:

bl{}pTlxl’liy LV, T) where L(V,.T):= fxc(a:,T(a:)) — V(T (x))du(x) + fy V(y)dv(y).

[ 3lell — o Feodn(e) + | 5llPdvin) =5,

37

L . 1
where the cost function is the quadratic cost c(x,y) = , lx — v]|2.

= Since I/ achieves the optimal transport cost, V* is the Kantorovich potential.



Fake Solutions in Semi-dual Neural OT

Fake Solution Example

The max-min solution of the SNOT problem is defined as the minimizer of inner problem.

This implies that any measurable map Ty: A — B can be a max-min solution of SNOT.

Tp: o argminfe(e,y) = Vo (v)]  inf] 5llel®~ @ Fedute) + | Slyldvly) -

yey 0
No dependency on T

2
3
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Fake Solutions in Semi-dual Neural OT

Fake Solution Example

=  The max-min solution of the SNOT problem is defined as the minimizer of inner problem.

=  This implies that any measurable map Ty: A — B can be a max-min solution of SNOT.

. . 1 1 2
Ty : x — argmin [c(z,y) — Vi (y)] n%f/X 5l ll® = (e Perydp(a) + f slyllPdv(y)=3.

yey 0
No dependency on T

" There is no constraint ensuring that Tou = v.

7
7
/,//

Fake Solution Visualization

W‘
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Analytical results for Semi-dual Neural OT

Sufficient Conditions for Ensuring True Solution

= The max-min solution (VT, TT) and the optimal solution (V*, T*) satisfy:
(v, T} e {(vi,Th).

= The sufficient condition to prevent fake solution is as follows:

Theorem 3.1. Let j1 € Po(X), v € Po(Y), and c(x,y) =
|l —y||%. Assume that j1 does not give mass to the measur- Condition on
able sets of Hausdorff dimension at most d — 1 dimension. | Ex) Absolutely continuous

(1) Then, there exists a unique OT Map T in (Eq. 3) and
the Kantorovich potential V* € S.in (Eq. 5).

(2) For the Kantorovich potential V* € S., the minimization
problem,

D, = argmin [c(z,y) — V*(y)], (10)
yey T g-parametrization

is uniquely determined p-a.s., i.e. D, = {y.} for pu-a.s
x € X. In particular, a map © — y, € D, is a unique
OT Map T™ in law. 20




Analytical results for Semi-dual Neural OT

Sufficient Conditions for Unique max-min Solution

= The max-min solution (VT, TT) and the optimal solution (V*, T*) satisfy:
{(V*,T")} c {(VJF,TJF)} Unique
= For completeness, an additional condition for v is required to ensure the uniqueness of the mix-

min solution.

Corollary 3.3. Suppose Y C R% is a closure of a bounded
open set. Suppose 1 € Po(X) and v € Ps(Y) are abso-
lutely continuous distributions that have positive density
functions on their domain. Then, the solution (V*,T*) of
equation (9) is unique. In other words, V* € S. is unique
up to constant, and T is a deterministic OT Map.




Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport ™ exists

= Assume that the source u and target v distributions are uniformly supported on
A=1]0,1] x{0} and B =10,1] x {1} U [0,1] x {—1}.
" The standard SNOT parameterizes the transport map with as deterministic function Tjy.

When only an OT Plan it* exists, the SNOT cannot accurately represent the stochastic OT Map.

m'rTrmTrT‘F'"A T T‘PT — T?Tw A

22




Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport T* exists

= Any function T(x) = T1(x) or T, (x) becomes a max-min solution of SNOT.

Ti(x) = (x1,1) and Ty(x) = (xq,—1).

T1(x)

Fake Solution Visualization

T, (x)
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Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport ™* exists

The naive stochastic parametrization of OT Map cannot address this problem.

* Given a stochastic variable z ~ N(0, I), the stochastic parametrization is given as:

To(x, z) € arg ggg{c(x: y)—V™(y)}

24



Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport ™* exists

The naive stochastic parametrization of OT Map cannot address this problem.

Given a stochastic variable z ~ N (0, I), the stochastic parametrization is given as:

To(x, z) € arg Iyréig{C(wa y)—V™(y)}

However, even stochastic parametrization does not guarantee the true solution.

It only ensures that the transport plan ' is supported on the subdifferential, i.e., nT(GCV*) = 1.

Proposition 3.4 (Informal). Assume that the stochastic
parametrization of Ty(x, z) is ideally trained as in equa-
tion (17) for (u,N)-a.s. D, in Eq. 10 may not uniquely
determined and Ty (x, z) may contain fake solutions.

25



Failure Cases When Our Conditions Is Not Met

Failure Cases Visualization

OT Map

Fake Solution

(a) Perpendicular

Figure 1. Visualization of failure cases by comparing the Optimal Transport map (1st row) and the max-min solution (2nd row) of
Semi-dual Neural OT in the failure cases. The source data = ~ p, target data y ~ v, and generated data 7'(z) are represented in Blue,
Orange, and Red. The max-min solution fails to recover the correct OT Map.
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(b) Parallel

(c) One-to-Many

/HH L - .
—
Y v
(d) Grid

X~H
y—~v
T(x)
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Optimal Transport Plan (OTP) Model

27



Optimal Transport Plan (OTP)
Proposed Method

= Qur goalis to learn the OT Plan T* between the source distribution u and the target distribution v.

C(M’ V) '~ TrEIi_II%fL V)

/ (z,y)dr(z, y)
X XY

=  Why the stochastic OT Plan?
* Thm 3.1 s the inherent property of 1. When this condition is not satisfied, the existence of OT Map T is

not guaranteed.

Neural Network T

x“\wy

28




Optimal Transport Plan (OTP)
Proposed Method

= Qur goalis to learn the OT Plan T* between the source distribution u and the target distribution v.

C(M’ V) '~ TrEIi_II%fL V)

/ c(x,y)dmr(x,y)
X XY

=  Why the stochastic OT Plan?
* Thm 3.1 s the inherent property of 1. When this condition is not satisfied, the existence of OT Map T is

not guaranteed.

= Our method consists of two steps:
1. Introduce the smoothed version of the source distribution p..

2. Gradually adjust p. back to the original source measure L.

29



Optimal Transport Plan (OTP)
OTP Model

"= We require two conditions on the smoothed measure pu,:
* (cl) u. does not give mass to the measurable sets of Hausdorff dim at most d — 1 dim.

* (c2) pe, weakly converges to p as k - .

— Allows the SNOT to recover the true OT Plan and ensures the convergence of the OT Plan.

=  Two options for the smoothing distribution.

* Gaussian convolution u., = p * N(0, € 1)

* Variance-preserving convolution p,, = (,/ 1-— ekld)#u * N (0, €,1)

with a predefined noise schedule €, \ 0

* For noise-level scheduling, we follow diffusion model [1].

[1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations.” ICLR 2021.
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Optimal Transport Plan (OTP)
OTP Model

Our method consists of two steps:
1. Apply SNOT on the smoothed measure p,

- For each level €, the max-min solution of L"})T recovers the OT Map T and the Kantorovich potential IV*.

£f, .z, =su { /X inf (2, To(2)) =V (To(@))] dpie(@) + /X v¢<y>du<y>] .

31



Optimal Transport Plan (OTP)
OTP Model

Our method consists of two steps:

1.

Apply SNOT on the smoothed measure p,

For each level €, the max-min solution of L"})T recovers the OT Map T and the Kantorovich potential IV*.

bz, =sup | [ inf e To(e) Vi (Do) diafe) + [ Volwavty)|.

® To

Gradually adjust u, back to the original source measure u.

Ask — o, i.e., € N 0, the OT Plan 1t} = (Id, Ty, ) 4H¢, converges (up to a subsequence) to 1",

Theorem 4.1. Let { e, }ren be a sequence absolutely con-
tinuous probability measures, and T} be the OT map from
Le, to . If pe, weakly converges to | as k — oo, then
mr = (Id,T}) 4 ke, weakly converges to the OT plan
between i and v, along a subsequence. Consequently, T},
from our OTP model with either convolution above also
weakly converges to 7, along a subsequence.

32



Optimal Transport

Plan (OTP)

Training Algorithm

Algorithm 1 Training algorithm of OTP

Require: Source distribution x and the target distribution

1
1

v, OT Map network 7y and potential network V; Total
number of iteration A'; Number of inner-loop iterations
K7 Decreasing sequence of noise levels {e, H*_, .

I: fork=0.1,2,..., K do

2:  Sample abatch x ~ u, y ~ v, 2 ~ N(0,1).
30 T+ ez orT 1 — e + \Jexz.
4. Update ¢ to maximize L, = —V,, (Th(Z)) + Vi (y).
5 for ) =0,1,..., Kr do

6: Sample a batch x ~ p1,z ~ N(0.1).
7 T4 &+ €Lz 0or T < /1 —€pu+ \/crz.
8 Lo=c(x,Ty(x)) — Vy (Th(T)) + Vi(y).
9 Update ¢ to minimize Ly.

0. end for

I: end for

33
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Experiments

Optimal Transport Plan Evaluation

=  Our model learns a more accurate optimal transport plan compared to previous methods.

y A 4
. . // — - .
Existing Model ' r ]
1 i '
%! A4 X~ U
y~v
P | of | S| )?“-',U
V7 1. o
: 4 3 . T(X)
T 1
Our model de o 4
I I |
sd %'l 4
— s |
(a) Perpendicular (b) Parallel (c) One-to-Many (d) Grid

Figure 3. Qualitative comparison between OTM (1st row) and our model (2nd row) on failure cases in Sec 3.2. The noised source
sample = in Alg 1 is denoted in Green. While OTM falls into fake solutions and fails to generate the target distribution correctly, our OTP
model successfully learns the OT Plan.
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Experiments

Optimal Transport Plan Evaluation

= We evaluate our model against SNOT (OTM) and the SNOT with a stochastic generator (OTM-s).
e Transport cost error Dopsr = W2 (,v) — [ [|ITo(x) — x||?du(x)|
* Target distribution error Dygyger = Wi (Touit, v)

* Our model outperforms particularly in high-dimensional settings.

Table 1. Quantitative comparison of numerical accuracy on syn-
thetic datasets. Each model is evaluated using two metrics: trans-
port cost error De,s+(].) and target distribution error Diarges (1.

Perpendicular One-to-Many
Dco.s-t Dtarget Dcost Df,arget

O™ 0.038  0.0079  0.069 0.10
d=2 OTM-s  0.0070  0.018 0.35 0.032
Ours 0.019  0.0068 0.0022 0.11

O™ 0.043 0.039 0.10 73.23
d=14 OTM-s  0.033 0.065 0.010 0.038
Ours 0.089  0.0086 0.033 0.094

O™ 0.16 4.97 71.28 73.23
d=16 OTM-s  0.061 4.85 97.49 99.57
Ours 0.058 0.59 0.057 0.65

O™ 2.13 19.37 21.92 32.94
d= 64 OTM-s  2.74 18.79 0.20 12.21
Ours 0.97 10.09 0.14 9.98

Dimension  Model




Experiments

Neural OT Evaluation on 121 Translation Tasks

= Stochastic Transport Application (MNIST-to-CMNIST)

* The naive stochastic generator fails to learn the stochastic map.

%
©

>

(a) OTM-s (FID=62.4, LPIPS=0.36)

Figure 2. Example of a stochastic transport map (OT Plan) task,
e.g., MNIST-to-CMNIST colorization.

(b) Ours (FID=3.18, LPIPS=0.32)

Figure 4. Experimental results on a stochastic transport
map application, i.e., MNIST-to-CMNIST translation.



Experiments

Neural OT Evaluation on 121 Translation Tasks

=  Image-to-Image Translation Benchmark
* We assessed our model on several Image-to-Image (121) translation benchmarks.

Table 2. Image-to-Image translation benchmark results compared to ex-
isting Neural (Entropic) OT models { indicates the results conducted by
ourselves. DSBM scores are taken from (Gushchin et al., 2024; De Bortoli

etal., 2024).
Data Model FID (|) LPIPS ()

NOT (Korotin et al., 2023b) 11.96 -
, I OTM (Fan et al., 2022) 6.42 0.16
Male-to-Female (64x64) 1y PNt (Choi et al., 20240)  4.48 0.20
OTP (Ours) 475 0.20
DSBM (Shi et al., 2024) 20+ 0.59
_ o OTM' (Fan et al., 2022) 12.42 0.47
Wild-to-Cat (64x64) DIOTM' (Choi et al.. 2024a)  10.72 0.45
OTP (Ours) 9.66 0.52
DSBM (Shi et al., 2024) 37.8 0.25

ASBM (Gushchin et al., 2024)  16.08 -
Male-to-Female (128x128) OTMT (Fan et al., 2022) 7.55 0.21
DIOTMT (Choi et al., 2024a) 7.40 0.25

OTP (Ours) 6.38 0.27




| Conclusion

= Neural Optimal Transport is a powerful framework for generative modeling and image-to-image translation,

but existing methods often suffer from fake solutions.
= We identify a sufficient condition that guarantees the avoidance of such fake solutions in Semi-dual Neural OT.

= We propose the Optimal Transport Plan (OTP) model, which introduces smoothing on the source measure to

enable more reliable and accurate transport plan learning.
= QOur OTP model successfully recovers the correct OT Plan in failure cases where existing models fail.

= These advancements enhance the reliability of Neural OT, making it more effective for various machine

learning applications.



Thank you!



Failure Cases When Our Conditions Is Not Met

When unique T™ exists

*= The previous examples is the case when T™ exists but is not unique.
= Assume that the source u and target v distributions are uniformly supported on

Not Absolutely Continuous A = [—1,1] X {0} and B =[-1,1] x {1}.

X~HM
y~v
o T(x)

41



Failure Cases When Our Conditions Is Not Met

When unique T™ exists

= Here, the optimal potential V* and the OT Map T* are as follows:

* 1 *
V') = ly.ll* fory=(y1,y2) and T*(x) =(x1,1) forx = (x1,xz).

= Any function T((xl, xz)) := (x4, a) for any a € R becomes a max-min solution of SNOT.

1, s 1
+f Slviav)=3

No dependency on the second component

Ty : x — argmin [c(z,y) — Vi (y)] inf/
X

yey

Fake Solution Visualization

1
T

g lle1=T(@) |*dp (=)

T T T
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