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Introduction

We present a new theory of machine learning.

Main Idea

• Machines learn a function when they succeed in computing it.

When do machines succeed?

• Machines succeed when they satisfy both the truth condition and the belief
condition.
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Machine Learning as Successful Computation

• Definition: Machines learn a function when they succeed in computing it.

=> Successful Computation vs. Mere Computation

• Machines succeed when they compute it without fail.

=> According to Gödel (1992), computation is achieved without fail whenever
axiomatic proof is provided in a rich system.
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Successful Computation and ML

Theorem

There is a Turing machine M that can compute y for the function f (x1,x2, · · · ,xn) when
the machine receives (x1,x2, · · · ,xn) as input if and only if the mathematical formula
f (x1,x2, · · · ,xn) = y is provable in a rich system S. (Gödel 1992)

• Inspired by Gödel 1992 and Feferman 2006, we epistemically interpret successful
computation as “machine learning”.

=> Successful computation leads to machine learning
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Successfully Computable and Learnable

"With the concept of computability, Turing has succeeded in giving an absolute definition
of an epistemological notion" (Gödel 1995)
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Successful vs. Mere Computation

• Definition: Machines merely compute a function when they happen to compute it
under some crucial assumption in the system (without proof)

(ex) i.i.d. assumption (e.g. Vapnik 2000 or Valiant 1984)

=> Kim 2024 proves under what condition machines learn the true probability
without relying on the i.i.d. assumption.
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The Success Criterion for Machines to Learn: Two Conditions

• 1. Truth Condition: machines are correct most of the time (not necessarily
perfectly correct)

• 2. Belief Condition: the machines are self-assured whenever they indeed satisfy the
truth condition

=> Under these conditions, machines attain computational success and thus
learning.
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Machine Learning on the True Probability

• Definition: A true probability P(At+1|βt) is what collectively constitutes a
probability space, a triple (Ω,F ,p) of a joint true probability p by the stochastic
data-generating process St ’s.

Theorem

If machines learn the true probability, then Π(At+1|βt) = P(At+1|βt). (Kim 2024)

• If machines learn, then what they compute must be true to our world.
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Truth Condition for Learning the True Probability

Truth Condition

• Definition: Machines are (precisely) correct when Π(At+1|βt) = P(At+1|βt)

• Machines satisfy the truth condition when limsup
t→∞

|Π(At+1|βt)−P(At+1|βt)| < ϵ,

∀ϵ> 0.

=> Machines cannot be said to learn if they are wrong too (= infinitely) often.
=> This is the usual consistency condition in learning theory
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First Motivation for the Truth Condition

• Why does the truth condition need to be asymptotic ?

=> When machines accidentally happen to return correct computation once or
twice, machines are not said to learn.

• (ex) a broken clock analogy

Theorem

Consider any machine forecast α ∈ℜ[0,1]. If P(At+1|ß t) ̸=α at least for infinitely many t’s
with t ≥ n for some n <∞ along the stochastic path, then P(At+1|ßt) =α at some t∗ < n is
not equivalent to learning the true probability at t∗. (Kim and Kang 2024)
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Second Motivation for the Truth Condition

• Why does the truth condition need to be precisely correct ?

=> If machines cannot learn precisely, machines cannot learn approximately
either.

(cf) floating point for π

Theorem

Suppose that no machines can learn the true probability function P, denoted f ∗∞, after
processing training samples {Xi}∞i=1. Then, no machines can assess any finite learning rule
fn,m (for n,m <∞) as either a good or bad approximation to the true probability f ∗∞. (Kim
and Kang 2024)
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What is Approximation?

• Definition: Machines do an approximation on the true target function f ∗ by a
learning rule fn,m when machines compute the distance function ℓ(fn,m(·), f ∗) < δ

for a given small bound δ<∞.

• Definition: A distance function is a function ℓ : Ψ2 → [0,∞) such that

ℓ
(
fn,m({Xi}

m
i=1, f ∗({Xi}

n
i=1), {Xi}

∞
i=m+1), f ∗({Xi}

∞
i=1)

)
.
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What is Approximation? (Continued)

• Definition: A learning rule is any sequence of measurable functions, fn,m’s,
provided by machines, where each

fn,m : Ξm ×Ψn ×Ξ→Ψ

depends on the following data:

(1) the initial training samples of labeled data {(Xi,Yi)}n
i=1

(2) the unlabeled data {Xi}m
i=n+1

(3) the random variable Xm+1 for prediction, given that m > n for n,m ∈N∪ {0}.
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What is Approximation? (Continued)

• There are various measures to approximate the true probability P.

(1) Variational Distance: VP(Q) = sup{|P(A)−Q(A)| : A ∈σ(Σ)}

(2) Brier Score: BP(Q) =∑
σ∈Σ(P(σ)−Q(σ))2

(3) Hellinger Distance: HP(Q) =∑
σ∈Σ(P(σ)+Q(σ)−2(P(σ)Q(σ))

1
2 )

(4) Kullback-Leibler Divergence: DKL(P||Q) =∑
σ∈Σ P(σ)log( P(σ)

Q(σ) )
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Belief Condition for Learning the True Probability

Belief Condition

• Machines satisfy the belief condition when
Π (limsup

t→∞
|Π(At+1|βt)−P(At+1|βt)| < ϵ, ∀ϵ> 0)= 1

whenever the true condition is satisfied.

=> Definition: Machines tolerate an error when
Π(At+1|ßt) = P(At+1|ßt) but Π({Π(At+1|ßt) ̸= P(At+1|ßt)}) > 0

=> Machines cannot be said to learn if they tolerate errors too (= infinitely) often.
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First Motivation for the Belief Condition

• Why do machines need the belief condition to learn, in addition to the usual (truth)
consistency condition?

=> We can construct a stochastic process whose subsequence satisfies the truth
condition but whose true underlying true probability machines do not learn.

(ex) A stochastic path where for any n > N ∈N, on ⌊n
2 ⌋ number of the periods t′s

where {Xt = x} occurs, P(Xt = x|ßt−1) =α, while P(Xt = x|ßt−1) =β on the rest of the
periods for any x ∈ {x1, . . . ,xk} with α ̸=β.
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Second Motivation for the Belief Condition

• According to Lewis 1980, subjective probability should be bound by objective
probability when the objective one is known.

• Likewise, belief condition should be bound by the truth condition when the truth
condition is proven.

=> It must be that Π ( the truth condition is satisfied ) = 1 when the truth condition
has been proven, not just assumed.

• In other words, machines should prove the truth condition without relying on the
i.i.d. assumption, in order to learn the true probability.
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Extending to ML on General Functions

• For machines to learn any general functions from finite samples, machines should
extrapolate an infinite array of potential outcomes from a finite set of inputs,
inevitably introducing uncertainty.

=> Learning any general functions involves probability
=> To learn any general function, machines learn the true probability first.

• The truth condition for machines to learn a function f ∗:

with true probability P− one, limsup
m→∞

ℓ ( fn,m({Xi}m
i=1, f ∗({Xi}n

i=1), Xm+1),

f ∗(Xm+1)) < ϵ, ∀ ϵ> 0.
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