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1. Introduction

Q. What is synthetic data?

Artificial data that has almost identical structure and statistical properties to the real-world dataset.

(a) Real data

(b) Synthetic data

Figure 1: Conceptual example with Titanic dataset. (It is hard to distinguish between them!)
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Q. Why synthetic data?

Synthetic data has received growing attention as a form of the privacy enhancing technology, aiming
to protect private information while preserving data utility for analysis.

Real-world data often contains sensitive or personal information (medical records, financial
transactions, and personal user data, ...).

However, if we can generate synthetic data that does not reveal any private information, it can
be freely used for AI model development or research.
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2. Task

Q. How to generate synthetic data?

It is deeply rooted in the classical statistical field of density estimation, which has been
extensively studied for decades.

Target underlying distribution: x ∼ p∗(x)

- x ∈ Rp: an observation (a multivariate random variable)

Learning objective: Estimate the unknown distribution using the observed dataset

min
p̂

D
(
p∗(x), p̂(x)

)
, (1)

▶ the observed dataset = rows of a tabular dataset

▶ D(·, ·): the distance (or divergence) between two distributions

▶ p̂(·): an estimated distribution learned from the observed data (a function of the observed data)
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Synthetic data generation: Sampling from the estimated distribution

x̂(i) ∼ p̂(x), i = 1, 2, · · · ,m

Figure 2: The conceptual process of data synthesis (the image from [El Emam et al., 2020]).

Tools: Generative Adversarial Networks, Variational AutoEncoders, Energy-based models, Diffusion
models, Autoregressive models, Optimal transport....
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3. Challenge: Heterogeneity

In other domains...

Image data: x ∈ {0, 1, . . . , 255}p (a collection of pixels)

Text data: x ∈ Vp (a sequence of tokens from a vocabulary V)

⇒ In both cases, each dimension (i.e., pixel or token) shares the same data type and value range.
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However, in the tabular domain:

Continuous: supported on a bounded interval, semi-infinite domain, or the entire real line

Discrete or categorical : finite or infinite support

Others: ordinal, time, string, etc.

- https://en.wikipedia.org/wiki/List_of_probability_distributions

⇒ (Heterogeneity) Each feature (i.e., column) may exhibit distinct characteristics and data types.

Figure 3: Heterogeneous tabular dataset example: Titanic dataset
(Name: string, Age: ordinal, Fare: numerical, Embarked: categorical...).

Seunghwan An (Incheon National University) 2025 KIAS CAINS Workshop 8 / 36

https://en.wikipedia.org/wiki/List_of_probability_distributions


Challenge in the Tabular Domain: Heterogeneity

The distributions of individual columns can vary widely — Specifying a parametric form for each
column is impractical and poses a significant modeling challenge.

Our strategy: Non-parametric approach!

1 Quantile function estimation + Variational AutoEncoder (NeurIPS 2023, CIKM 2024)

2 Histogram density estimation + Any-order Autoregressive model (AAAI 2025)
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Non-Parametric Approach 1: Quantile Function Estimation

Knowing all quantiles of a distribution is equivalent to knowing the entire distribution itself,
regardless of the underlying form of the distribution [Gneiting and Raftery, 2007].

Q. How to estimate a quantile?

F : R → [0, 1]: Cumulative distribution function (CDF) of a random variable X

F−1(τ): Quantile corresponding to the quantile level τ ∈ [0, 1]

For a specific quantile level τ ∈ [0, 1], the corresponding quantile loss function is:

F−1(τ)︸ ︷︷ ︸
true

= argmin
Q(τ)

EX

[
ρτ (X − Q(τ)︸ ︷︷ ︸

model

)
]
, (2)

▶ ρτ (m) = m(τ − I(m < 0)) : pinball loss
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Here, we adopt two strategies: (A) the proper scoring rule and (B) non-parametric
modeling.

⇒ Objective: Find the quantile function Q by

F−1 = argmin
Q

∫ 1

0︸︷︷︸
(A)

EX

[
ρτ (X −Q(τ)︸ ︷︷ ︸

(B)

)
]
dτ. (3)

(A) Proper scoring rule: Summation of quantile losses across all quantile levels [0, 1]
▶ We can obtain the quantile function Q such that Q(τ) = F−1(τ) for all τ ∈ [0, 1].

▶ Then, we can recover the distribution function F from Q−1!

(B) Q: a non-parametric quantile function with linear isotonic spline
▶ It avoids having to specify a parametric form of the distribution.

▶ Equation (3) can be computed in closed form! [Gasthaus et al., 2019]
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We integrate these two strategies into the Variational AutoEncoder framework.

VAE objective (with the NEW reconstruction loss) (NeurIPS 2023, [An and Jeon, 2024]):

min
θ,ϕ

Ep∗(x)Eq(z|x;ϕ)

[
p∑

j=1

∫ 1

0

ρα

(
xj −Qj(α, z; θ)

)
dα

]
︸ ︷︷ ︸
proper scoring rule(

∫ 1

0
) + non-parametric modeling(Qj)

+β · Ep∗(x)KL(q(z|x;ϕ)∥p(z)), (4)

▶ z ∈ Rd: latent variable

▶ p(z): the prior distribution / q(z|x;ϕ): posterior distribution

The decoder Qj(α, z; θ) approximates the conditional quantile function of xj | z for α ∈ [0, 1]
(i.e., a distribution estimator).

However, the optimal decoder output of the “conventional VAE” is a weighted sum of the data
points (i.e., a point estimator).

Seunghwan An (Incheon National University) 2025 KIAS CAINS Workshop 13 / 36



Proposition (Cramér–von Mises Criterion)

Under some assumptions, we have

∫ (
F ∗(x)−

∫ p∏
j=1

Q−1
j (xj , z; θ)p(z)dz

)2

p∗(x)dx

≤ 4pM · Ep∗(x)Eq(z|x;ϕ)

[
p∑

j=1

∫ 1

0

ρα

(
xj −Qj(α, z; θ)

)
dα

]
+ 4 · Ep∗(x)KL(q(z|x;ϕ)∥p(z)),

where M > 0 is a constant.

Figure 4: Estimated CDFs (dashed blue) vs. True CDFs (solid orange) on cabs dataset.
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Extension to distributional time-series forecasting (CIKM 2024, [Hong et al., 2024])

We incorporated a temporal structure within the latent space.

We estimate the conditional quantile function for the next time step (i.e., p(xt+1 | xt)).

(a) BTC (b) BCH (c) XRP

Figure 5: Cryptocurrency asset price forecasting. The black and green lines are the ground truth and the
predicted median, respectively. The blue band encompasses predicted quantiles ranging from 0.1 to 0.9.
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Non-Parametric Approach 2: Histogram

Histogram density estimation is another well-known classical non-parametric distributional
learning approach [Li et al., 2019].

Since histogram-based density estimation suffers from the curse of dimensionality, we instead
consider a factorized form (the product of univariate densities):

p(x1,x2, · · · ,xp)︸ ︷︷ ︸
high-dimensional

= p(x1) p(x2 | x1) p(x3 | x1,x2)︸ ︷︷ ︸
univariate

· · · p(xp | x1,x2, · · · ,xp−1) (5)

Goal: Estimate each univariate density using a histogram-based approach.
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However, the (univariate) histogram-based approach is theoretically valid only when continuous
variables have bounded support [Wasserman, 2006].

(WLOG) Therefore, we consider a conditional density with the change of variable using F :

p(y | x) = c(F (y) | x)︸ ︷︷ ︸
(a)

× p(y)︸︷︷︸
(b)

(6)

▶ p: the marginal PDF of y

▶ F : the marginal CDF of y

▶ c: the density with the bounded support range of F (y) ∈ [0, 1]

Approach:
▶ (a): Histogram-based density estimation. ⇐ Our main focus!

▶ (b): Estimate using empirical distribution function.
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Q. How to apply the histogram-based approach?

1 Partition the [0, 1] interval with L+ 1 cut-points, b0, b1, · · · , bL, where

0 = b0 < b1 < b2 < · · · < bL−1 < bL = 1,

resulting in L bins (= [b0, b1), [b1, b2), · · · , [bL−1, bL]).

2 Define the “classification target z” based on the bin within which F (y) belongs:

if bl−1 ≤ F (y) < bl, then z = l

3 Define the target probability:

πl(x) := Pr
(
z = l | x

)
= Pr

(
bl−1 ≤ F (y) < bl | x

)
=

∫ bl

bl−1

c(v | x)dv (7)

is the conditional probability of F (y) in the lth bin given x (the lth bin: [bl−1, bl)).
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Figure 6: Example of a histogram over the [0, 1] interval.

Problem reformulation:
Density estimation ⇒ Estimating the “conditional” probability mass assigned to each bin
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Histogram-based conditional density estimator:

c(F (y) | x; θ) :=
L∑

l=1

I(F (y) ∈ [bl−1, bl))

1/L
· πl(x; θ) , (8)

where
∑L

l=1 πl(x; θ) = 1.

Motivation (mean value theorem): If F (y) belongs to the lth bin, then

c(F (y) | x; θ) = πl(x; θ)

1/L
≈︸︷︷︸
(∗)

πl(x)

1/L
=

∫ bl
bl−1

c(v | x)dv
1/L

≈ c(F (y) | x) (9)

▶ (∗): the learning objective
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Proposition (Total Variation Distance)

Under some assumptions,

TV
(
p(· | x), p(· | x; θ)

)
≤ K

2L
+

√
Bias(θ)√
2/L

,

where K is a constant. Here, TV(·, ·) denotes the total variation distance, and Bias(θ) is defined as:

Bias(θ) :=
L∑

l=1

πl(x) log πl(x)−Ez|x

[
L∑

l=1

I(z = l) log πl(x; θ)

]
︸ ︷︷ ︸

objective: classification loss

,

where z|x is a random variable having a categorical distribution such that Pr(z = l | x) = πl(x) for
all l ∈ [L].

The total variation distance can be upper bounded by the classification loss.
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Therefore, our objective is the classification loss for “any-order” autoregressive model:

min
θ

−Ep(z)p(m)

[ ∑
j:mj=0︸ ︷︷ ︸
masked

L∑
l=1

I(zj = l) · log πjl( z⊙m︸ ︷︷ ︸
un-masked

; θ)

]
, (10)

▶ ⊙: element-wise product

▶ m ∈ {0, 1}p: a binary vector indicating masked values (mj = 0: the jth column is masked)

▶ conditioning set: x → z⊙m (un-masked variables)

▶ target variable: z → zj such that mj = 0 (masked variable)

p(m): a uniform distribution with full support over {0, 1}p

⇒ It allows us to learn conditional densities for all possible combinations of conditioning sets
and target variables.
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Connection to Masked Language Modeling
1 The bin index serves as a “word” index aligned with each column, encompassing its own

vocabulary set of L+ 1 words (= {0, 1, 2, · · · , L}), including ‘0’ for the masked input.

2 Interpretation: Given contextual information (un-masked columns), the task is formulated as a
classification problem that predicts the conditional probability mass assigned to each bin (word)
of a specific target variable (masked column).

Note: The classification loss can be easily incorporated into distributional learning for discrete
variables.

⇒ “Classification for all” approach: A unified framework that formulates conditional distribution
estimation as a classification problem across all variable types.
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Figure 7: Overall structure and training process of our proposed method (AAAI 2025, [An et al., 2025]).
In this case, the value of the second column is masked (replaced with ‘0’) and predicted.
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Table 1: The results from 10 datasets and 10 repeated experiments are reported.

Statistical similarity Data utility

Model KL ↓ GoF ↓ MMD ↓ WD ↓ SMAPE ↓ F1 ↑ Model ↑ Feature ↑

Baseline .016±.002 .029±.002 .002±.000 1.019±.156 .107±.008 .686±.023 .887±.018 .956±.005

CTGAN .221±.014 .561±.046 .094±.007 6.435±1.011 .256±.016 .411±.027 .208±.048 .417±.043

TVAE .066±.003 .119±.005 .016±.001 1.631±.173 .192±.011 .608±.021 .486±.041 .747±.027

CTAB-GAN .116±.008 .196±.025 .044±.004 3.327±.460 .218±.012 .524±.026 .263±.042 .568±.041

CTAB-GAN+ .136±.018 .144±.010 .054±.007 3.971±.772 .226±.017 .530±.020 .227±.048 .601±.041

DistVAE .059±.007 .070±.004 .016±.001 2.272±.282 .226±.017 .588±.021 .194±.048 .695±.030

TabDDPM .696±.117 .374±.087 .057±.011 42.916±8.127 .161±.011 .576±.022 .507±.039 .770±.027

TabMT .011±.001 .035±.003 .012±.001 2.299±.346 .188±.013 .622±.024 .528±.039 .761±.028

Ours .034±.004 .072±.004 .007±.001 1.630±.245 .158±.010 .635±.023 .599±.035 .925±.007

Figure 8: Estimated histograms (blue) vs. True histograms (orange) on kings dataset.
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Criteria

Learning objective: Train a model that can generate synthetic data that is similar to the original
data.

⇒ Q. But how do we measure “similarity”?

Evaluation Criteria for Synthetic Data
1 Statistical Similarity: Does the synthetic data preserve the statistical properties of the real

data?

2 Data Utility: Can models trained on synthetic data achieve comparable performance to those
trained on real data in downstream machine learning tasks?

3 Privacy Preservability: Does the synthetic data prevent the leakage of sensitive or personally
identifiable information?
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Metrics

1. Statistical Similarity

Approach: Measure statistical distances between distributions of marginal variables (or their
joint distributions) in the real and synthetic datasets.

Examples of metrics:
▶ Kullback–Leibler divergence

▶ Kolmogorov–Smirnov statistic

▶ 1-Wasserstein distance

▶ Maximum Mean Discrepancy

▶ Cramér–Wold distance

▶ ...

Seunghwan An (Incheon National University) 2025 KIAS CAINS Workshop 28 / 36



2. Data Utility

Assumption: “High-quality” synthetic data should allow us to train machine learning models
that perform comparably to those trained on real data.

Approach: Compare the performance of two machine learning models
(linear model, logistic regression, Random Forests, SVM, ...):
▶ One trained on the original dataset

▶ One trained on the synthetic dataset

using a “common” real test dataset.

Examples of metrics:
▶ Regression: Mean Squared Error (MSE), Mean Absolute Error (MAE)

▶ Classification: Accuracy, F1 score, AUROC, etc.

▶ Model selection, Feature selection

Note: High statistical similarity does not necessarily imply high data utility [Hansen et al., 2023].
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3. Privacy Preservability

Goal: Assess how well the synthetic data protects sensitive information in the original dataset.

Exact match detection: Check whether any synthetic sample is too close or identical to a real
sample. — Distance to Closest Record (DCR)

Attribute inference attack: Simulate an attacker with partial knowledge of a real sample (e.g.,
subset of attributes), and test whether similar samples in the synthetic data can reveal
additional private attributes. — Attribute Disclosure (AD)

Note: Privacy preservability is in a trade-off relationship with statistical similarity and data utility.
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Structured Restriction

Generating synthetic data under structural constraints among variables is critical for ensuring
“reliable” and practically usable synthetic datasets.

Inequality constraints: e.g., income should be greater than expenses (income > expenses)

Monotonic relationships: e.g., satisfaction level should increase with service quality

Compositional constraints: e.g., proportions must sum to one (e.g., budget allocations)

Q. How to effectively impose structured restrictions on the generative model, either through the (1)
model architecture, (2) the training objective, or (3) post-processing techniques?
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Thank you for your attention.
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