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Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.
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Optimal Transport (OT) Problem
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▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.

• Monge’s Formulation.

Monge’s Optimal Transport [2]

Transport Map 𝑻

𝒙 ∼ 𝝁 ⟹ 𝑻 𝒙 ∼ 𝝂
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Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

Monge’s Optimal Transport [2]

Transport Map 𝑻

𝒙 ∼ 𝝁 ⟹ 𝑻 𝒙 ∼ 𝝂

Optimality by cost-minimizing
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▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.

• Monge’s Formulation.



Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.

• Monge’s Formulation.

• Kantorovich’s Relaxation.

where Π(𝜇, 𝜈) ≔ the set of joint probability distributions on 𝒳 ×𝒴 whose marginals are 𝜇 and 𝜈.

Monge’s Optimal Transport [2]
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Introduction

Neural Optimal Transport

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Today, we focus on approaches for learning optimal transport maps with neural networks.
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Fake Solutions in Neural OT



Fake Solutions in Semi-dual Neural OT

Optimal Transport Map (OTM)
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Semi-dual formulation for OT

𝒄-transform of 𝒗

▪ OTM [1, 2] learns the transport map 𝑻 through a max-min formulation.

• 𝑣𝑐 denotes the 𝒄-transform of 𝑣, i.e., 𝑣𝑐 𝑥 = inf
𝑦∈𝒴

(𝑐 𝑥, 𝑦 − 𝑣(𝑦)) .

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.

Static Optimal Transport



Fake Solutions in Semi-dual Neural OT

Optimal Transport Map (OTM)

11

Semi-dual formulation for OT

𝒄-transform of 𝒗

▪ OTM [1, 2] learns the transport map 𝑻 through a max-min formulation.

• 𝑣𝑐 denotes the 𝒄-transform of 𝑣, i.e., 𝑣𝑐 𝑥 = inf
𝑦∈𝒴

(𝑐 𝑥, 𝑦 − 𝑣(𝑦)) .

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.

Static Optimal Transport

Min-max objective between Transport map 𝑻 and Potential 𝒗



Fake Solutions in Semi-dual Neural OT

Fake Solutions in Semi-dual Neural OT (SNOT)
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▪ The semi-dual approach is known to have the fake solutions.

• When the optimal potential 𝑉⋆ and the transport map 𝑇⋆ exists, it is well known that [1, 2] 

• Thus, the pair (𝑽⋆, 𝑻⋆) is the solution to the max-min problem.

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.



Fake Solutions in Semi-dual Neural OT

Fake Solutions in Semi-dual Neural OT (SNOT)
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▪ The semi-dual approach is known to have the fake solutions.

• When the optimal potential 𝑉⋆ and the transport map 𝑇⋆ exists, it is well known that [1, 2] 

• Thus, the pair (𝑽⋆, 𝑻⋆) is the solution to the max-min problem.

▪ However, not all solutions of the max-min problem correspond to the true optimal potential and 

transport map pair.

▪ The optimal solution of SNOT framework may fail to recover the correct optimal transport map.

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.



Fake Solutions in Semi-dual Neural OT

Fake Solution Example

14

▪ Assume that the source 𝝁 and target 𝝂 distributions are uniformly supported on 

𝑨 = −𝟏, 𝟏 × {𝟎} and   𝑩 = 𝟎 × −𝟏, 𝟏 .



Fake Solutions in Semi-dual Neural OT

Fake Solution Example
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▪ Assume that the source 𝝁 and target 𝝂 distributions are uniformly supported on 

𝐴 = −1, 1 × {0} and    𝐵 = 0 × −1, 1

▪ All transport map achieves the same transport cost:

▪ Since all transport maps yield the same cost, any transport map becomes an OT Map 𝑻⋆.



Fake Solutions in Semi-dual Neural OT

Fake Solution Example
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▪ To analyze the fake solution, we first show that 𝑉⋆ is the optimal Kantorovich potential

𝑉⋆ 𝑦 =
1

2
𝑦 2.

Dual Prob



Fake Solutions in Semi-dual Neural OT

Fake Solution Example
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▪ To analyze the fake solution, we first show that 𝑉⋆ is the optimal Kantorovich potential

𝑉⋆ 𝑦 =
1

2
𝑦 2.

▪ This result follows from solving the inner problem of SNOT (dual OT problem) as follows:

where the cost function is the quadratic cost 𝑐 𝑥, 𝑦 =
1

2
𝑥 − 𝑦 2.

▪ Since 𝑉⋆ achieves the optimal transport cost, 𝑉⋆ is the Kantorovich potential.



Fake Solutions in Semi-dual Neural OT

Fake Solution Example
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▪ The max-min solution of the SNOT problem is defined as the minimizer of inner problem.

▪ This implies that any measurable map 𝑻𝜽: 𝑨 → 𝑩 can be a max-min solution of SNOT.

No dependency on 𝑻



Fake Solutions in Semi-dual Neural OT

Fake Solution Example
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▪ The max-min solution of the SNOT problem is defined as the minimizer of inner problem.

▪ This implies that any measurable map 𝑻𝜽: 𝑨 → 𝑩 can be a max-min solution of SNOT.

▪ There is no constraint ensuring that 𝑻𝜽𝝁 = 𝝂.

Fake Solution Visualization

No dependency on 𝑻



Analytical results for Semi-dual Neural OT

Sufficient Conditions for Ensuring True Solution
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▪ The max-min solution (𝑉†, 𝑇†) and the optimal solution 𝑉⋆, 𝑇⋆ satisfy:

𝑉⋆, 𝑇⋆ ⊊ { 𝑉†, 𝑇†) .

▪ The sufficient condition to prevent fake solution is as follows:

Condition on 𝝁
Ex) Absolutely continuous

𝑻𝜽-parametrization



Analytical results for Semi-dual Neural OT

Sufficient Conditions for Unique max-min Solution 
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▪ The max-min solution (𝑉†, 𝑇†) and the optimal solution 𝑉∗, 𝑇∗ satisfy:

𝑉∗, 𝑇∗ ⊂ {(𝑉†, 𝑇†)}

▪ For completeness, an additional condition for 𝜈 is required to ensure the uniqueness of the mix-

min solution.

Unique



Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport 𝝅⋆ exists
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▪ Assume that the source 𝝁 and target 𝝂 distributions are uniformly supported on 

𝐴 = 0, 1 × {0} and    𝐵 = 0,1 × 1 ∪ 0,1 × −1 .

▪ The standard SNOT parameterizes the transport map with as deterministic function 𝑇𝜃.

• When only an OT Plan 𝝅∗ exists, the SNOT cannot accurately represent the stochastic OT Map.



Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport 𝝅∗ exists
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▪ Any function 𝑻 𝒙 = 𝑻𝟏 𝒙 𝐨𝐫 𝑻𝟐(𝒙) becomes a max-min solution of SNOT.

𝑇1 𝑥 = (𝑥1, 1) and    𝑇2 𝑥 = 𝑥1, −1 .

Fake Solution Visualization

𝑻𝟏(𝒙)

𝑻𝟐(𝒙)



Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport 𝝅∗ exists
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▪ The naïve stochastic parametrization of OT Map cannot address this problem.

• Given a stochastic variable 𝑧 ∼ 𝑁(0, 𝐼), the stochastic parametrization is given as:



Failure Cases When Our Conditions Is Not Met

When only Stochastic Transport 𝝅∗ exists
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▪ The naïve stochastic parametrization of OT Map cannot address this problem.

• Given a stochastic variable 𝑧 ∼ 𝑁(0, 𝐼), the stochastic parametrization is given as:

▪ However, even stochastic parametrization does not guarantee the true solution. 

• It only ensures that the transport plan 𝝅† is supported on the subdifferential, i.e., 𝜋† 𝜕𝑐𝑉
⋆ = 1.



Failure Cases When Our Conditions Is Not Met

Failure Cases Visualization
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Fake Solution

OT Map
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Optimal Transport Plan (OTP) Model



Optimal Transport Plan (OTP)

Proposed Method

▪ Our goal is to learn the OT Plan 𝝅⋆ between the source distribution 𝜇 and the target distribution 𝜈.

▪ Why the stochastic OT Plan?

• Thm 3.1 is the inherent property of 𝝁. When this condition is not satisfied, the existence of OT Map 𝑇⋆ is 

not guaranteed.

28



Optimal Transport Plan (OTP)

Proposed Method

▪ Our goal is to learn the OT Plan 𝝅⋆ between the source distribution 𝜇 and the target distribution 𝜈.

▪ Why the stochastic OT Plan?

• Thm 3.1 is the inherent property of 𝝁. When this condition is not satisfied, the existence of OT Map 𝑇⋆ is 

not guaranteed.

▪ Our method consists of two steps:

1. Introduce the smoothed version of the source distribution 𝜇𝜖.

2. Gradually adjust 𝝁𝝐 back to the original source measure 𝜇.

29



Optimal Transport Plan (OTP)

OTP Model

▪ We require two conditions on the smoothed measure 𝝁𝝐:

• (c1) 𝜇𝜖 does not give mass to the measurable sets of Hausdorff dim at most 𝑑 − 1 dim.

• (c2) 𝜇𝜖𝑘 weakly converges to 𝜇 as 𝑘 → ∞.

→ Allows the SNOT to recover the true OT Plan and ensures the convergence of the OT Plan.

▪ Two options for the smoothing distribution.

• Gaussian convolution 𝜇𝜖𝑘 = 𝜇 ∗ 𝑁 0, 𝜖𝑘𝐼

• Variance-preserving convolution 𝜇𝜖𝑘 = 1 − 𝜖𝑘𝐼𝑑 #
𝜇 ∗ 𝑁 0, 𝜖𝑘𝐼

with a predefined noise schedule 𝜖𝑘 0

• For noise-level scheduling, we follow diffusion model [1].

[1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.
30



Optimal Transport Plan (OTP)

OTP Model

▪ Our method consists of two steps:

1. Apply SNOT on the smoothed measure 𝜇𝜖

- For each level 𝜖𝑘, the max-min solution of ℒ𝑉,𝑇
𝑘 recovers the OT Map 𝑻∗ and the Kantorovich potential 𝑉∗.

31



Optimal Transport Plan (OTP)

OTP Model

▪ Our method consists of two steps:

1. Apply SNOT on the smoothed measure 𝜇𝜖

- For each level 𝜖𝑘, the max-min solution of ℒ𝑉,𝑇
𝑘 recovers the OT Map 𝑻∗ and the Kantorovich potential 𝑉∗.

2. Gradually adjust 𝜇𝜖 back to the original source measure 𝜇.

- As 𝑘 → ∞, i.e., 𝜖𝑘 0, the OT Plan 𝝅𝒌
∗ = 𝐼𝑑, 𝑇𝑘

∗
#𝜇𝜖𝑘 converges (up to a subsequence) to 𝝅∗.

32



Optimal Transport Plan (OTP)

Training Algorithm

33
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Experiments



Experiments

Optimal Transport Plan Evaluation
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▪ Our model learns a more accurate optimal transport plan compared to previous methods. 

Our model

Existing Model



Experiments

Optimal Transport Plan Evaluation
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▪ We evaluate our model against SNOT (OTM) and the SNOT with a stochastic generator (OTM-s).

• Transport cost error 𝐷𝑐𝑜𝑠𝑡 = |𝑊2
2 𝜇, 𝜈 − ∫ 𝑇𝜃 𝑥 − 𝑥 2𝑑𝜇 𝑥 |

• Target distribution error 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑊2
2(𝑇𝜃#𝜇, 𝜈)

• Our model outperforms particularly in high-dimensional settings.



Experiments

Neural OT Evaluation on I2I Translation Tasks
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▪ Stochastic Transport Application (MNIST-to-CMNIST)

• The naïve stochastic generator fails to learn the stochastic map.



Experiments

Neural OT Evaluation on I2I Translation Tasks
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▪ Image-to-Image Translation Benchmark

• We assessed our model on several Image-to-Image (I2I) translation benchmarks.



Conclusion

▪ Neural Optimal Transport is a powerful framework for generative modeling and image-to-image translation, 

but existing methods often suffer from fake solutions.

▪ We identify a sufficient condition that guarantees the avoidance of such fake solutions in Semi-dual Neural OT.

▪ We propose the Optimal Transport Plan (OTP) model, which introduces smoothing on the source measure to 

enable more reliable and accurate transport plan learning.

▪ Our OTP model successfully recovers the correct OT Plan in failure cases where existing models fail.

▪ These advancements enhance the reliability of Neural OT, making it more effective for various machine 

learning applications.

39



Thank you!
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Failure Cases When Our Conditions Is Not Met

When unique 𝑻⋆ exists
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▪ The previous examples is the case when 𝑇∗ exists but is not unique.

▪ Assume that the source 𝝁 and target 𝝂 distributions are uniformly supported on 

𝐴 = −1, 1 × {0} and    𝐵 = −1,1 × 1 .Not Absolutely Continuous



Failure Cases When Our Conditions Is Not Met

When unique 𝑻⋆ exists

42

▪ Here, the optimal potential 𝑉⋆ and the OT Map 𝑇⋆ are as follows:

𝑉⋆ 𝑦 =
1

2
𝑦2

2 for 𝑦 = 𝑦1, 𝑦2 and        𝑇⋆ 𝑥 = 𝑥1, 1 for 𝑥 = (𝑥1, 𝑥2).

▪ Any function 𝑻 𝒙𝟏, 𝒙𝟐 ≔ 𝒙𝟏, 𝒂 for any 𝑎 ∈ ℝ becomes a max-min solution of SNOT.

Fake Solution Visualization

No dependency on the second component
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