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= Polymer : a large molecule that is composed of repeating units, called monomers.
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Block Copolymers

= A copolymer is a polymer that consists of two or more distinct monomer units.
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= Block copolymers comprise two or more homopolymer subunits linked by covalent bonds.

_ Branched Polymers
Linear Polymers

T IR

AB Diblock ABC Triblock

AB multi-arm star-shaped AB Bottlebrush

M. W. Matsen, 2006 3




Polymeric Liquids _—
Examples of Polymer Liquids

Types of Polymer Liquids A ——
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Self-Assembly of Block Copolymers

= Block copolymers can spontaneously form various nanometer scale microstructures.
= Depending on interaction strength and polymer architectures, we can produce various stable
nano-structures.
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Self-Assembly of Block Copolymers

Metal Patterning Landscape

* Direct EUV: best for cost and process complexity.
* SALELE: capable of tighter pitches than direct EUV for a given litho tool. *SALELE: Self-Aligned Litho-
* DSA SALELE: best for variability, requires custom design rules. Etch-Litho-Etch

Direct EUV m—-— Vanablllty fisk

EUV SALELE* m - High Variability Risk

= They have potential to create novel self-assembled structures with unique properties and diverse
applications.

= These complex morphologies offer significant potential for applications in photonics, solar cells,
and separation membranes.

https://semianalysis.com/2024/04/18/intels-14a-magic-bullet-directed/#why-directed-self-assembly-is-needed-breaking-the-dose-vs-cd-
tradeoff 6



Statistical Mechanics for Self-assembly

= Statistical mechanics 1s a tool to investigate the phase behavior
of polymers.
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1. Consider various nano-structure candidates. ONN (DFCC. ®BCC, O)BCC, (10)DG,
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2. Compute the partition function and free energy of each
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= Typical steps for theoretical studies.
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Polymer Field Theory

* In polymer field theory, a many-body problem is converted to the problem of single chain polymer in

the potential fields.

Statistical mechanics of single polymer
chain in potential fields
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Decoupling interactions using the field transformation Effective Hamiltonian
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Energy of the entire system AB-type copolymers
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Many-Body Problem




Self-consistent Field Theory (SCFT)

There are a few simulation methods based on the polymer field theory, such self-consistent field
theory (SCFT) and field-theoretic simulations (FTSs).

In SCFT, the functional integrals are approximated using the saddle-point approximations,
O6H 6H

Z = Zoexp(—=fH [w,, will), swil, _ =" W, =0
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Self-consistent field theory (SCFT) has been the workhorse method for study of the self-assembly of
block polymers.

Because it is computational efficient (a few seconds ~ a few mins with GPUs), and it allows the
direct access of the free energy.

F = H[W+' {Wi}];




Self-consistent Field Theory (SCFET)

= We can obtain the SCFT solution using an iterative method.

Set input fields

Wy (r)' Wp (I'), Wc (I'),

Compute chain propagators
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Self-consistent Field Theory (SCFT)

= We can obtain the SCFT solution using an iterative method.

Set/Update input fields

/ wy(r), wg(r), we(r), ... w

saddle-point error < threshold

OoH
qg_)t (rr S) 6Wl

Compute chain propagators

» Converged

Wi=w; Yes
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using Q,, {w;}

Compute single chain partition functions and densities

Qp/ ¢K (r)

11




Inverse Design in Self-assembly

= In the context of self-assembly of block copolymers, the inverse molecular design is finding
polymer architectures or systems that stabilize the target phase.

= One of the ultimate goals in block copolymer self-assembly is to develop methods that
identify chain architectures capable of stabilizing target nanostructures. e~
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Inverse Design in Self-assembly

» The network phases, whose domain is continuous,

are difficult to synthesize.

= [t is worth to publish a paper, if one find good
polymer architectures or systems.

Park et al., Phys. Rev. Materials 7, 105601 (2023)
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Inverse Design in Self-assembly

= Recently, Q. Dong et al. employed Bayesian optimization to search for the desired structures self-
assembled by ABC-type miktoarm copolymers.
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= But, they investigated only one polymer architecture.
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Inverse Design in Self-assembly

= QOur ultimate goal is to find polymer

architectures from arbitrary branched polymers.

= First, we counted the number of polymer

architectures using SMILES.

* To uniquely regenerate SMILES, sorting

algorithm is added.
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Traditional Research Workflow for Material Discovery

Choose Target

C (a) arfap =10 disordered
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Get hints from 00 02 04 06 08 10

experiments and One or two weeks a few hours ~ a few day
theories

= [t wasn’t easy to investigate various polymeric systems with this workflow
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My Previous Works

= [t is hard to develop general software that is efficient for arbitrary branched polymers and mixtures.

= Because each polymer has own strategy to reduce the computational costs, which requires human
intervention.
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My Previous Works

= We developed an algorithmic approach that avoids redundant computations by utilizing the dynamic

programming.
Complex Architecture Dynamic Programming
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J. Chem. Theory Comput. 2025,21,7,3676—-3690
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My Previous Works

= Also, we extended our software for multi-monomer systems.

1

ABC svstem Polymer Field Theory for Multimonomer

o 1 Y Incompressible Models: Symmetric Formulation and
< IxaBl, |xBC| < XaAC ABC Systems
\>S David Morse*, Daeseong Yong, Kexin Chen

Q 0 1 9 — f Macromolecules 2025, 58, 1,816—-825

& 2 or2=+o

A imaginary fields

Developing Software
—1 0 1
XAB/XAC

= We developed efficient general software for arbitrary branched
polymers and mixtures, thus developing software for each polymeric
system is no longer required.
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Traditional Research Workflow for Material Discovery

Choose Target

E (a) aa/ap =10 disordered
0 I U (S ] Y YO VA |
Get hints from 00 02 04 06 08 10
experlments and a few hours ~ a few day
theories
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Inverse Design in Self-assembly

* [Instead of relying on the physical intuitions and experimental results, we can search all
possible candidates.

Propose polymers

B ok B

5 Block copolymer Star polymer Comb polymer Brush polymer

AB, star Palm-tree AB,, H-shaped B,AB, Dumbbell (pom-pom)
Ring block Star block AB, Coil-cycle-coil Star A B,
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Inverse Design in Self-assembly

* [nstead of relying on the physical intuitions and experimental

results, we can search all possible candidates.

Examples)
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Inverse Design in Self-assembly

= We are searching for the polymer architectures that stabilize various phases up to n = 7.
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1) Candidate phases.

L, C, BCC, FCC, Simple Cubic,

PL, A15, Sigma

Network phases:
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2) Parameter Space

xN € [10,30] with interval 2.5

l, € [0.14, 0.5] with interval 0.02,
where [, 1s length of A-type block.

lp =1 — 1, 1s length of B-type block.




Inverse Design in Self-assembly

= Example 1)

AB
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D BC BC € € € € € € D6 L L L L L L L L L=lamellar
N D D BC BC C C C € C DG D6 L L L L L L L C=cylinder

£ D D D B B € € € € DG DG L L L L L L L BC=BCC,
FC=FCC,
P D D D B B C €C C€C € DG DG L L L L L L

DG: double gyroid
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Inverse Design in Self-assembly

= Example 2)
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L=lamellar
C=cylinder,
SC=simple cubic
BC=BCC,
FC=FCC,

DG: double gyroid



Inverse Design in Self-assembly

= We found polymer architectures that stabilize each phase.

Among ~ 300 architectures:

L, C, BCC, FCC, DG, Simple Cubic, A15, Sigma: Many ‘

DF‘
SPI

sD |I

DD: 22

SG: 17

SP: 4

SD:3 Lee et al., Science 383, 70-76 (2024)
PL: 2

DP (plumbers' nightmare): 0~1

End-end chain )
interactions

Plumber’s
nightmare cubic
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Machine Learning Approach

= [imitations:
= We investigated only limited number of polymers ~ 300.
» The parameter windows were small for SD, SP, DP, PL

= Mixtures are not considered.
# (AB) | # (ABQ)

= Currently, we are constructing a graph neural network that predicts 2 1 [

free energy to extend our approach to more complex architectures. 3 4 7
m 4 10 34
= Data points: ~400k 5 36 197
" Inputs: | | 6 106 1061
- polymel.’ architecture in graph - 375 6087
= [Interacting parameters, yN
. Phase 8 1249 34966
= Qutput: Free energy 9 4544 206308
10 16583

= Jts implementation is almost done....
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New Research Workflow for Material Discovery

Various Architectures, SCFT computation
Interaction parameters

o W@ —

Candidate Phases

Acquisition ; | . I l ABA
BAB
All possible Architectures, SCFT computation by

After Trainin '
Ining Candidate Phases | .. rction parameters ML
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= We have developed efficient software that automatically eliminates redundant
computations in self-consistent field theory (SCFT) computation.

= Using this approach, we investigated the self-assembly behavior of AB-type branched
block copolymers in brute force manner.

* This approach is currently being extended to more complex branched polymers using
graph convolutional networks
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