
Neighborhood-aware training of NeuralODEs to
(accurately) predict dynamical invariants of chaotic systems

Joon-Hyuk Ko
Center for AI and Natural Sciences, Korea Institute for Advanced Study

2025/05/30
KIAS CAINS Workshop

On going work with Andrus Giraldo & Prof. Deok-sun Lee

2025.05.30

Contents

1. Introduction

Data-driven dynamics discovery

Neural Ordinary Differential Equations

Previous work

2. Learning chaotic time series data

3. Neighborhood-aware training for Neural ODEs

4. Preliminary results and outlook

2025.05.30

Data-driven discovery of dynamical systems

3/29

Introduction

1. Discover new science 2. Forecast future dynamics 3. Use as dynamics surrogates

Physical system State observations Discovered dynamics

Adapted from M. Schmidt and H. Lipson, Science 324, 5923 (2009).

2025.05.30

Autoregressive time-series models

4/29

Introduction

Models of the form:

𝒙𝒙𝒊𝒊+𝟏𝟏 = ℱ(𝑡𝑡𝑖𝑖 ,𝒙𝒙𝒊𝒊;𝜽𝜽) 𝒙𝒙𝒊𝒊 : State prediction at time 𝑡𝑡𝑖𝑖
𝜽𝜽 : Trainable model parameters

Training : Generate predictions 𝒙𝒙𝒊𝒊 𝑖𝑖=0
𝑁𝑁 from initial condition 𝒙𝒙𝟎𝟎, tune 𝜽𝜽 to minimize trajectory error

Ex 1) Parametrized ODE models with to-be-determined coefficients

Ex 2) Recurrent Neural Networks (RNNs)

Ex 3) Neural Ordinary Differential Equations (Neural ODEs)

𝒉𝒉𝒊𝒊 = 𝑅𝑅𝑅𝑅𝑅𝑅(𝒉𝒉𝒊𝒊−𝟏𝟏, 𝑥𝑥𝑖𝑖;𝜽𝜽)

https://python.plainenglish.io/understanding-recurrent-neural-networks-f2f6ea2640a0

2025.05.30

Neural Ordinary Differential Equation

5/29

Introduction

A Neural ODE is given by,

𝒙𝒙 𝑡𝑡 = 0 = 𝒙𝒙𝟎𝟎 ,
𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

𝑡𝑡 = 𝑓𝑓𝑁𝑁𝑁𝑁(𝑡𝑡,𝒙𝒙 𝑡𝑡 ;𝜽𝜽)

......

...

...

...

: Network parameters
...

...

...

...

: Network parameters

Neural network : Neural ODE :

→ models the state trajectory → models the state dynamics

2025.05.30

Obtaining model predictions

6/29

Introduction

Cannot analytically integrate neural networks → Use a numerical ODE solver algorithm!

𝒖𝒖 𝑡𝑡𝑖𝑖 = 𝒖𝒖𝟎𝟎 + �
0

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑 ≈ ODESolve 𝑵𝑵𝑵𝑵 𝑡𝑡,𝒖𝒖;𝜽𝜽 ,𝑢𝑢0, 𝑡𝑡𝑖𝑖

Euler method:
𝒖𝒖𝒏𝒏+𝟏𝟏 = 𝒖𝒖𝒏𝒏 + 𝑵𝑵𝑵𝑵 𝑛𝑛Δ𝑡𝑡,𝒖𝒖𝒏𝒏;𝜽𝜽 ⋅ Δ𝑡𝑡

Runge-Kutta 4th order method:
𝒖𝒖𝒏𝒏+𝟏𝟏 = 𝒖𝒖𝒏𝒏 + 1

6
⋅ 𝒌𝒌𝟏𝟏 + 𝒌𝒌𝟐𝟐 + 𝒌𝒌𝟑𝟑 + 𝒌𝒌𝟒𝟒 ⋅ Δ𝑡𝑡

𝒌𝒌𝟏𝟏 = 𝑵𝑵𝑵𝑵(𝑛𝑛Δt,𝒖𝒖𝒏𝒏;𝜽𝜽)

𝒌𝒌𝟐𝟐 = 𝑵𝑵𝑵𝑵 𝑛𝑛 + 1
2
Δt,𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟏𝟏 ⋅

Δt
2

;𝜽𝜽

𝒌𝒌𝟑𝟑 = 𝑵𝑵𝑵𝑵 𝑛𝑛 + 1
2
Δt,𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟐𝟐 ⋅

Δt
2

;𝜽𝜽

𝒌𝒌𝟒𝟒 = 𝑵𝑵𝑵𝑵 𝑛𝑛 + 1 Δt,𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟑𝟑 ⋅ Δ𝑡𝑡;𝜽𝜽 https://lowebms.readthedocs.io/en/latest/code/rk4.htmlhttps://www.haroldserrano.com/blog
/visualizing-the-runge-kutta-method

2025.05.30

Training Neural ODEs

7/29

Introduction

2025.05.30

Why Neural ODEs?

8/29

Introduction

• A natural choice to model continuously varying phenomena

• Handling missing / irregular time points is trivial

R. T. Q. Chen et al. NeurIPS 31 (2018).
Y. Rubanova et al. NeurIPS 32 (2019).

2025.05.30

Why Neural ODEs?

9/29

Introduction

• Functional form of the differential equation is always simpler than that of its solution

• Straightforward to incorporate partial knowledge of the system dynamics

Euler-Lagrange equation: 𝜕𝜕ℒ
𝜕𝜕𝜕𝜕
− 𝑑𝑑

𝑑𝑑𝑑𝑑
𝜕𝜕ℒ
𝜕𝜕𝑞̇𝑞

= 0

Lagrangian Neural Network

M. Cranmer et al. ICML Workshop on Integration of Deep Neural Models
and Differential Equations (2020).

Hamiltonian Neural Network

S. Greydanus et al. NeurIPS 32 (2019).

Hamilton’s equations: 𝑞̇𝑞 = 𝜕𝜕ℋ
𝜕𝜕𝜕𝜕

, 𝑝̇𝑝 = −𝜕𝜕ℋ
𝜕𝜕𝑞𝑞

𝒙̇𝒙 = 𝐴𝐴𝒙𝒙 vs 𝒙𝒙 𝑡𝑡 = 𝑒𝑒𝑨𝑨𝑡𝑡

2025.05.30

Pre-KIAS: Stabilize Neural ODE training on long data

• A proportional coupling term can synchronize the model dynamics with the data trajectory
• Prevents the untrained model from diverging away from data and produces better loss landscapes 10/29

Introduction

Unknown data dynamics: 𝑑𝑑𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑭𝑭 𝑡𝑡, 𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• Uncoupled • Synchronized

For a large 𝑘𝑘 > 0, 𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 2
→ 0 as 𝑡𝑡 → ∞

Coupling term

Model:
𝑑𝑑𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑵𝑵𝑵𝑵 𝑡𝑡, 𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; 𝜃⃗𝜃 − 𝑘𝑘(𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)Model:
𝑑𝑑𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑵𝑵𝑵𝑵 𝑡𝑡, 𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; 𝜃⃗𝜃

2025.05.30

Pre-KIAS: Stabilize Neural ODE training on long data

• Start with a simple proxy problem, and continuously transform back to the original difficult problem
• Effectively avoids bad local minima

11/29

Stabilizing model training

𝜆𝜆 = 1

𝜆𝜆 = 0

Adapted from: X. Lin et al. ICML (2023).

𝝀𝝀 = 𝟏𝟏: Strong coupling

𝝀𝝀 = 𝟎𝟎:
Original NeuralODE

𝑑𝑑𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑵𝑵𝑵𝑵 𝑡𝑡, 𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; 𝜃⃗𝜃 − 𝜆𝜆𝑘𝑘(𝑥⃗𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
Homotopy parameter

• Vanilla training • Homotopy optimization

Optimization trajectory

2025.05.30

Pre-KIAS: Stabilize Neural ODE training on long data

• Models trained with the homotopy method have stronger interpolation / extrapolation performance
• Required training epochs are also greatly reduced

12/29

Introduction

• Interpolation Error • Extrapolation Error • Training epochs

Different datasets / models Different datasets / models Different datasets / models

J. H. Ko et al. NeurIPS (2023).

Learning chaotic time series data

2025.05.30

Chaotic systems

14/29

Learning chaotic time series data

Ubiquitous in nature: weather data, fluid flow, population dynamics, cardiac signals, etc..

Small initial change…

is amplified exponentially
(butterfly effect)

https://juliadynamics.github.io/DynamicalSystems.jl
/previews/PR156/chaos/lyapunovs/

Chaos: “Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence
on initial conditions” - S. Strogatz, Nonlinear Dynamics and Chaos, Third Edition (2024).

𝑥̇𝑥 = 𝜎𝜎(𝑦𝑦 − 𝑥𝑥)
𝑦̇𝑦 = 𝑥𝑥 𝜌𝜌 − 𝑧𝑧 − 𝑦𝑦
𝑧̇𝑧 = 𝑥𝑥𝑥𝑥 − 𝛽𝛽𝛽𝛽

Lorenz equations

2025.05.30

Impossibility of exact long-term predictions

15/29

Learning chaotic time series data

Chaotic dynamics are sensitive to changes in the equation parameters as well

Even if the trained model is very close to the ground truth, exact trajectory predictions fail after
some characteristic time

x(
t)

Ex) Lorenz system trajectories with slightly different parameters

𝜎𝜎, 𝜌𝜌,𝛽𝛽 = 10, 28.0, 8
3

𝜎𝜎, 𝜌𝜌,𝛽𝛽 = 10 + 10−15, 28.0, 8
3

𝑥̇𝑥 = 𝜎𝜎(𝑦𝑦 − 𝑥𝑥)
𝑦̇𝑦 = 𝑥𝑥 𝜌𝜌 − 𝑧𝑧 − 𝑦𝑦
𝑧̇𝑧 = 𝑥𝑥𝑥𝑥 − 𝛽𝛽𝛽𝛽

https://www.stochasticlifestyle.com/how-chaotic-is-chaos-how-some-ai-for-science-sciml-papers-are-overstating-accuracy-claims/

2025.05.30

Dynamic invariants of chaotic systems

16/29

Learning chaotic time series data

Goal of chaotic time series learning: Train models that are “statistically accurate”

However, chaotic systems have well-defined long-term, global characteristics

Ex) Strange attractors: Fractal structure in phase space that all trajectories converge onto after some finite time

Ex 2) Statistics computed over points on the attractor / along long temporal trajectories: Well-defined, invariant with
respect to the dynamics

2025.05.30

Explicitly using dynamical invariants in training

17/29

Difficulty of learning long time-series data

Dynamical invariants can be explicitly incorporated into model training to enhance model performance

J. Platt et al. Chaos 33 103107 (2023).

Data trajectory

Predicted trajectory

R. Jiang et al. NeurIPS (2023).

Total loss = Trajectory loss + Dynamical invariant loss

Ground truth

Trajectory loss only

With dynamical invariant

Y. Schiff et al. ICML (2024).

2025.05.30

Possible alternative: adding Jacobian information

18/29

Learning chaotic time series data

For dynamics 𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝒙𝒙), the Jacobian 𝐽𝐽 𝒙𝒙 = ∇𝒙𝒙′ |𝑓𝑓 𝒙𝒙′ 𝒙𝒙′=𝒙𝒙(𝑡𝑡) governs the dynamics of small perturbations
𝜹𝜹𝜹𝜹 𝑡𝑡 around the state 𝒙𝒙 𝑡𝑡 :

(Variational equation)

𝑑𝑑𝜹𝜹𝜹𝜹
𝑑𝑑𝑑𝑑 =

𝑑𝑑(𝒙𝒙 + 𝜹𝜹𝜹𝜹)
𝑑𝑑𝑑𝑑 −

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑 = 𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝛿𝛿 − 𝑓𝑓 𝑥𝑥 = 𝐽𝐽 𝒙𝒙 𝜹𝜹𝜹𝜹 + 𝑜𝑜 𝜹𝜹𝜹𝜹

Maximum Lyapunov exponent 𝜆𝜆1 = lim
𝑡𝑡→∞

1
𝑡𝑡

log 𝜹𝜹𝜹𝜹(𝑡𝑡) 2
𝜹𝜹𝜹𝜹(0) 2

 :

→ quantifies sensitivity to initial conditions

For n-D dynamics, there are n Lyapunov exponents 𝜆𝜆1 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛
Dynamical invariants!

2025.05.30

Possible alternative: adding Jacobian information

19/29

Learning chaotic time series data

For 1 step training, explicitly providing Jacobian information results in statistically accurate models

ℒ𝑀𝑀𝑀𝑀𝑀𝑀 𝜃𝜃 =
1
𝑛𝑛
�
𝑖𝑖=0

𝑛𝑛−1

𝒙𝒙𝑖𝑖+1 − �𝒙𝒙𝑖𝑖+1 2

J. Park et al. NeurIPS 38 (2024).

ℒ𝐽𝐽𝐽𝐽𝐽𝐽 𝜃𝜃 = ℒ𝑀𝑀𝑀𝑀𝑀𝑀 𝜃𝜃 +
1
𝑛𝑛
�
𝑖𝑖=0

𝑛𝑛−1

𝐽𝐽 𝒙𝒙𝑖𝑖 − 𝐽𝐽 𝒙𝒙𝑖𝑖 𝐹𝐹

�𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖 + ∫𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖+1 𝑁𝑁𝑁𝑁 𝒙𝒙(𝑡𝑡);𝜽𝜽 𝑑𝑑𝑑𝑑 : 1-step model predictions

𝐽𝐽 𝒙𝒙𝑖𝑖 = ∇𝒙𝒙′ |𝑁𝑁𝑁𝑁 𝒙𝒙′;𝜽𝜽 𝒙𝒙′=𝒙𝒙(𝑡𝑡) : Jacobian of the model dynamics

No noise, ground truth Jacobian supplied → Can we extend this to a more realistic setting?

Neighborhood-aware training for Neural ODEs

2025.05.30

Learning Jacobians from measured data

21/29

Neighborhood-aware training for Neural ODEs

Given time series data 𝑡𝑡𝑖𝑖 ,𝒙𝒙𝑖𝑖 𝑖𝑖=0
𝑛𝑛 generated from 𝑑𝑑𝒙𝒙

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝒙𝒙), how do we estimate 𝐽𝐽(𝒙𝒙𝑖𝑖)?

Global method:

Train an autoregressive model �𝒙𝒙𝑖𝑖+1 = 𝑓𝑓 �𝒙𝒙𝑖𝑖;𝜽𝜽 to minimize the trajectory error ℒ 𝜃𝜃 = 1
𝑛𝑛+1

∑𝑖𝑖 𝒙𝒙𝑖𝑖 − �𝒙𝒙𝑖𝑖 2

After training, estimate via �∇𝒙𝒙𝑓𝑓 𝒙𝒙 𝒙𝒙=𝒙𝒙𝑖𝑖
≈ 𝐼𝐼 + 𝐽𝐽 𝒙𝒙𝑖𝑖 𝛥𝛥𝑡𝑡𝑖𝑖

Widely researched in the chaos literature from the 80s; two major methods exist

(+) Only single global model is trained; Basically identical to conventional model training

(-) Learning function values from sampled points do not guarantee accurate derivatives, especially for
noisy data

2025.05.30

Learning Jacobians from measured data

22/29

Neighborhood-aware training for Neural ODEs

Given time series data 𝑡𝑡𝑖𝑖 ,𝒙𝒙𝑖𝑖 𝑖𝑖=0
𝑛𝑛 generated from 𝑑𝑑𝒙𝒙

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝒙𝒙), how do we estimate 𝐽𝐽(𝒙𝒙𝑖𝑖)?

Local method:

Inspired by the variational equation 𝑑𝑑𝜹𝜹𝜹𝜹
𝑑𝑑𝑑𝑑

= 𝐽𝐽 𝒙𝒙 𝜹𝜹𝜹𝜹 + 𝑶𝑶(𝜹𝜹𝜹𝜹 2) 𝜹𝜹𝜹𝜹 : Infinitesimal perturbations around state 𝒙𝒙

Perturbations 𝜹𝜹𝜹𝜹 are estimated using nearby neighbors in phase space:

2025.05.30

Learning Jacobians from measured data

23/29

Neighborhood-aware training for Neural ODEs

Local method:

For each 𝑖𝑖 = 0, 1, … ,𝑛𝑛

Train a local model �𝜹𝜹𝜹𝜹𝑖𝑖,1
(𝑗𝑗) = �𝐷𝐷𝐷𝐷𝑖𝑖(𝜹𝜹𝒙𝒙𝑖𝑖,0

𝑗𝑗 ;𝜽𝜽𝑖𝑖) by minimizing the 1-step evolution of the neighbor distances:

ℒ 𝜽𝜽𝑖𝑖 =
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
�
𝑗𝑗

𝜹𝜹𝜹𝜹𝑖𝑖,1
(𝑗𝑗) − �𝜹𝜹𝜹𝜹𝑖𝑖,1

𝑗𝑗 (𝜽𝜽𝑖𝑖)
2

For local linear models �𝐷𝐷𝐷𝐷𝑖𝑖 = 𝐴𝐴𝑖𝑖,

𝐴𝐴𝑖𝑖 ≈ 𝐼𝐼 + 𝐽𝐽 𝒙𝒙𝑖𝑖 𝛥𝛥𝑡𝑡𝑖𝑖

(+) Models are directly conditioned on the dynamics generated by the
Jacobian

(-) Requires fitting one model per single point estimation of the Jacobian

2025.05.30

Neighborhood-aware training

24/29

Neighborhood-aware training for Neural ODEs

𝑑𝑑�𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑁𝑁𝑁𝑁(�𝒙𝒙;𝜽𝜽)

𝑑𝑑�𝜹𝜹𝒙𝒙
𝑑𝑑𝑑𝑑 = ∇𝒙𝒙𝑓𝑓𝑁𝑁𝑁𝑁 �𝒙𝒙;𝜽𝜽 ⋅ �𝜹𝜹𝜹𝜹

0. Prior to training, identify the indices of the neighborhood points 𝒙𝒙𝑗𝑗 𝑖𝑖 𝑗𝑗=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for each data point 𝒙𝒙𝑖𝑖

�𝒙𝒙 0 = 𝒙𝒙𝑖𝑖

�𝜹𝜹𝜹𝜹 0 = 𝜹𝜹𝜹𝜹𝑖𝑖,0
(𝑗𝑗)

1. Generate predictions from the neural ODE using

Computed from 𝑓𝑓𝑁𝑁𝑁𝑁(�𝒙𝒙;𝜽𝜽) using automatic differentiation!

2. Minimize the loss function

𝐿𝐿 𝜽𝜽 = �
𝑖𝑖

�
𝑘𝑘=1

𝑠𝑠

𝑥𝑥𝑖𝑖+𝑘𝑘 − �𝑥𝑥𝑖𝑖+𝑘𝑘 2
2 +

1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑥𝑥𝑗𝑗 𝑖𝑖 +𝑘𝑘 − �𝑥𝑥𝑖𝑖+𝑘𝑘 − �𝛿𝛿𝛿𝛿𝑖𝑖,𝑘𝑘
(𝑗𝑗)

Trajectory loss Neighborhood loss

Goal: For 𝒙̇𝒙 = 𝑓𝑓(𝒙𝒙), train model to satisfy both 𝑓𝑓𝑁𝑁𝑁𝑁 𝒙𝒙;𝜽𝜽 ≈ 𝑓𝑓(𝒙𝒙) and ∇𝒙𝒙𝑓𝑓𝑁𝑁𝑁𝑁 𝒙𝒙;𝜽𝜽 ≈ ∇𝒙𝒙𝑓𝑓(𝒙𝒙)

Taylor mode autodiff for higher order expansion also possible

Preliminary results & Outlook

2025.05.30

Preliminary results

26/29

Preliminary results & Outlook

Models were trained with 5-step segments, and 25 neighbors were used for our method

2025.05.30

Preliminary results

27/29

Preliminary results & Outlook

The learned Jacobians were compared against the ground truth analytical Jacobian

Better Jacobians recovered!

lo
g 𝟏𝟏

𝟏𝟏
𝐽𝐽 𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡
𝒙𝒙
−
𝐽𝐽 𝑝𝑝
𝑝𝑝𝑝𝑝
𝑝𝑝
𝒙𝒙;
𝜽𝜽

𝐹𝐹
𝐽𝐽 𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡
𝒙𝒙

𝐹𝐹

2025.05.30

Assessing statistical accuracy

28/29

Preliminary results & Outlook

To gauge statistical accuracy, the Lyapunov spectrum of the trained models were estimated

Despite better Jacobians, improvement in statistical accuracy is marginal!

2025.05.30

Summary & Outlook

• For chaotic systems, training models that are statistically accurate is important

• Training models to properly learn the unknown dynamics and its Jacobian has the
potential to produce better models

• Current neighborhood-aware training does produce more accurate Jacobians, but
improvement in model performance is marginal

• Further algorithmic improvements & investigations are to be conducted

29/29

Summary and Outlook

- Optimal selection of neighbors
- Different loss functions

- Higher order Taylor expansions for
neighborhood dynamics

Thank you

	Neighborhood-aware training of NeuralODEs to �(accurately) predict dynamical invariants of chaotic systems
	Contents
	Data-driven discovery of dynamical systems
	Autoregressive time-series models
	Neural Ordinary Differential Equation
	Obtaining model predictions
	Training Neural ODEs
	Why Neural ODEs?
	Why Neural ODEs?
	Pre-KIAS: Stabilize Neural ODE training on long data
	Pre-KIAS: Stabilize Neural ODE training on long data
	Pre-KIAS: Stabilize Neural ODE training on long data
	Learning chaotic time series data
	Chaotic systems
	Impossibility of exact long-term predictions
	Dynamic invariants of chaotic systems
	Explicitly using dynamical invariants in training
	Possible alternative: adding Jacobian information
	Possible alternative: adding Jacobian information
	Neighborhood-aware training for Neural ODEs
	Learning Jacobians from measured data
	Learning Jacobians from measured data
	Learning Jacobians from measured data
	Neighborhood-aware training
	Preliminary results & Outlook
	Preliminary results
	Preliminary results
	Assessing statistical accuracy
	Summary & Outlook
	Thank you

