Neighborhood-aware training of NeuralODEs to
(accurately) predict dynamical invariants of chaotic systems
On going work with Andrus Giraldo & Prof. Deok-sun Lee

2025/05/30
KIAS CAINS Workshop

Joon-Hyuk Ko

Center for Al and Natural Sciences, Korea Institute for Advanced Study

CAINS

Center for Al and Natural Sciences

KI'A'S

2025.05.30

Contents

Introduction

Data-driven dynamics discovery
Neural Ordinary Differential Equations

Previous work

Learning chaotic time series data
Neighborhood-aware training for Neural ODEs

Preliminary results and outlook

Introduction 2025.05.30

Data-driven discovery of dynamical systems

Physical system State observations Discovered dynamics
w, =06,
(ﬁ\’r f}@\ Y @
9 0 ; \ ¥ i o
2 / ~_-T ™
< D — ;%2 = 4,00 = 6, — 6
% \/ ! de gt 2 2701
-21_] { i ! dw; _ mylyw? sin A cos AG+m, 1, w35 sin AB+m, g sin 6, cos AG—(m,+m,)g sin 6
0.0 0.5 10 1.5 2.0 el (my+1,) 11 —1yL, Cos AB
Time ¢ dw; My l,w? sin AB cos AB+(m,+my)(~1, w? sin A@+g sin 8, cos AG—g sin 8;)
—s = — 2 1
dt (mq+my)l,—myl, cos? AO
3 \
3 2 A = =
5 £\ / \ R
ke .- X\
— \ \/ \V LG T
4 © _/Y. \'2: 7
/ = \ \/
g -20 T T T :
0.0 0.5 1.0 1.5 2.0
Time t

1. Discover new science 2. Forecast future dynamics 3. Use as dynamics surrogates

3/29

Introduction 2025.05.30

Autoregressive time-series models

Models of the form:

x; . State prediction at time ¢;
0 : Trainable model parameters

Xiv1 = F(t;, x;;0)

Training : Generate predictions {xi}?’zo from initial condition xg, tune @ to minimize trajectory error

OUTPUT VALUE IN TIME “t"

()
Ex 1) Parametrized ODE models with to-be-determined coefficients |
- _, NEURON
Ex 2) Recurrent Neural Networks (RNNSs) T STATE
&

Ex 3) Neural Ordinary Differential Equations (Neural ODESs)

CURRENT INPUT IN TIME ‘t'

hi = RNN(hi_l,Xi; 0)

4/29
https://python.plainenglish.io/understanding-recurrent-neural-networks-f2f6ea2640a0

Introduction 2025.05.30

Neural Ordinary Differential Equation

A Neural ODE is given by,

d
x(t=0) =%, — (0= fun(tx(6);6)

R R dx(t) L
Neural network : x(t) = NN(t;p) Neural ODE: ——— = NN (X, t;p)

"

sssssss

p : Network parameters p : Network parameters

— models the state trajectory — models the state dynamics

5/29

Introduction 2025.05.30

Obtaining model predictions

Cannot analytically integrate neural networks > Use a numerical ODE solver algorithm!

Euler method:
Upi1 = Uy, + NN(nAt,u,; 0) - At

Runge-Kutta 4% order method: S 6
1
Up+1 = Up + g . (kl + kz + k3 + k4,) - At ey
k1 = NN(nAt, Uy, 0) —& F;w:-*
1 At
k =NN< + Y Atu, +k -E;e)

3 (n 2) nt 2 to to+ At to toth t

ks = NN((n + 1)At u, + k3 - At; 0)
6/29

Introduction 2025.05.30

Training Neural ODEs

Trajectory prediction Loss calculation

dz(t) QOO O
= NN(;Z, t: 9) # f(t) = f(to) + f \ 5O - «@
to 0

~ ODESolve (NN (56 t; 67) , fo)

\

p A
X1
x|

’.-.

-]

-

-2
)

Parameter update (gradient descent)
6 « 6 —nVzL(6)

7/29

Introduction 2025.05.30

Why Neural ODEs?

* A natural choice to model continuously varying phenomena

» Handling missing / irregular time points is trivial

(a) Recurrent Neural Network

00 05 10 15 20 00 05 10 15 20
Time Time
(b) Latent Neural Ordinary Differential Equation (a) Latent ODE (ODE enc) (d) Standard RNN

8/29

Introduction 2025.05.30

Why Neural ODEs?

* Functional form of the differential equation is always simpler than that of its solution

x=Ax vs x(t) =4t

« Straightforward to incorporate partial knowledge of the system dynamics

Hamiltonian Neural Network Lagrangian Neural Network
Ideal mass-spring system Baseline NN Prediction
ol oo 6aseline NN . \
;s Double Pendulum q Loss of
054/ 4 Energy
) -—> Py, %(HU + !Jlg,]l%’j? + %mgl;g%
. i {777.2[11-20-.()3“05((), 02)
05 +(my + ma)gly cos Oy 5
“ 10 \\\ -., = +1magly cos By -
e %
{ :
Noisy observations Hamiltonian NN Prediction Observe State \ X
, S—— — over Time Conservation of
1.0 y : :’.: TEESNN @ gradient of Hy 777 £
R I A A iy
p |1 . :‘_\‘ ? D
0.0 t® M
Q.; : Y mmeee- ¥ Generalized
St NN oo : //.j' I S Coordinates ('1 g L
A A [SRPRE SRRt . L (PPENT reL 8L
-1.0 T Ay LU I . (No need for canonical i= (—) (‘__Qf)
N ‘ - d 2 coordinates) K o % ‘WU
1 0 1 -1 0 1
q q
: . o3 o ion: 2% _ 4 (9L
’ .S . - L —— =] =
Hamilton’s equations: ¢ = P =—= Euler-Lagrange equation: 0 a\za) = 0
dp dq q q

9/29

Introduction 2025.05.30

Pre-KIAS: Stabilize Neural ODE training on long data

. dx 5
Unknown data dynamics: % = F(t, Xqqta)

* Uncoupled « Synchronized

dXpred = n N v v
Model: —2=% = NN (t, Xpreds 9) '9) — k(Xprea — Xaata)

Coupling term @H’“

dt

: ?épred (t)

« A proportional coupling term can synchronize the model dynamics with the data trajectory

* Prevents the untrained model from diverging away from data and produces better loss landscapes 10/29

Stabilizing model training

2025.05.30

Pre-KIAS: Stabilize Neural ODE training on long data

« Vanilla training

Optimization trajectory

1.0

~ 05

0.0

« Homotopy optimization

dfpred _ - A > > ‘
dt = NN (¢, Xpreds 0)— Ak (xpred xdata)
Homotopy parameter
A=1
A = 1: Strong coupling smoothed .\‘
A=0:
—ﬂmal NeuralODE 1
0 200 400 o0 Oriemal
Epoch A=0

« Start with a simple proxy problem, and continuously transform back to the original difficult problem

 Effectively avoids bad local minima

11/29

Introduction

2025.05.30

Pre-KIAS: Stabilize Neural ODE training on long data

* Interpolation Error

2.
101{ I Homotopy 8
B Multishoot
(= B Vanilla T o
o 10-4
-g 1004 =
© L
©° [=]
o
g O 1004
= 10714 £
£ i
w L
(%3] wn -
2 1072 = 107
10—2..

Black Box Gray Box Black Box Second Order Black Box

Lotka-Volterra Double Pendulum Lorenz

Different datasets / models

* Extrapolation Error

Black Box Gray Box Black Box Second Order Black Box

Lotka-Volterra Double Pendulum Lorenz

Different datasets / models

J. H. Ko et al. NeurIPS (2023).

4000 A
3500 A
3000 A
v 2500 A
<
8
o 2000
1500 A
1000 A
500 A

* Training epochs

Black Box Gray Box Black Box Second Order Black Box

Lotka-Volterra Double Pendulum Lorenz

Different datasets / models

* Models trained with the homotopy method have stronger interpolation / extrapolation performance

» Required training epochs are also greatly reduced

12/29

Learning chaotic time series data

2025.05.30

Learning chaotic time series data

Chaotic systems

Chaos: “Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence

on initial conditions”

Lorenz equations

|"“50
|

|T-;w
e x=0(y—x)

o oy=x(p—2)—y

x(1) +6(1)

. 18 = 160 e |
* | is amplified exponentiall ? S — _
SO xr) P P 4 |, z=xy—pz
(butterfly effect) P
Smallinitial change... T

Ubiquitous in nature: weather data, fluid flow, population dynamics, cardiac signals, etc..
14/29

Learning chaotic time series data 2025.05.30

Impossibility of exact long-term predictions

Chaotic dynamics are sensitive to changes in the equation parameters as well

Ex) Lorenz system trajectories with slightly different parameters

I 1] M
I'“" ||.|‘|’.l|’|. |'1|""||'|"|'|'\"ll I o, p,B) = (10,28.0,5
UL LTI

Even if the trained model is very close to the ground truth, exact trajectory predictions fail after

some characteristic time
15/29

Learning chaotic time series data 2025.05.30

Dynamic invariants of chaotic systems

However, chaotic systems have well-defined long-term, global characteristics

Ex) Strange attractors: Fractal structure in phase space that all trajectories converge onto after some finite time

ENNRN 0N # N\ @ -
N\ Aoy \W‘%@@\\ Q)
CrdNN HONNNE

LSS

@ = @04\\\2‘? 1&%N)
VYL &\@wm@b@w
cLF B SO
@QelP@CAYIMD
FEO e %@@w@@@
EF DG RER 4*NGBO|..

Ex 2) Statistics computed over points on the attractor / along long temporal trajectories: Well-defined, invariant with
respect to the dynamics

>
Uy jueuodxg AnoundeAq

Goal of chaotic time series learning: Train models that are “statistically accurate”
16/29

Difficulty of learning long time-series data 2025.05.30

Explicitly using dynamical invariants in training

Dynamical invariants can be explicitly incorporated into model training to enhance model performance

Total loss = Trajectory loss + Dynamical invariant loss

Parameters Ground tl’uth

Psr, Par @, 0, B — — ——
S — - — — —— -
| — -~ M 4: — R ——

|
wll

> -__—_’ - \,__—\ - — e —
Reservoir Computer 25;\5. ———— —— —/,_—\b
— Wou = ur”(ex + B! S e S
oy B SSe—=— =

u”(t)

M Forecasts u/ (t), Cgc

Loss(Cy, Cre, !, u”)

..

E ~ --:____- — — — T—— “’h__ ——
: —— — ‘-‘-_'\.- — —
: — — — M" - e —
Sm S0 NN — e e N
—» II+K \ - — - - - —
| v ot XZS'K\'?—":"/\’ - . _____.-".."—"-—-‘1“‘__——.:“
distribution || | |~ i e —— "“;M\ N\
matohing o) =N —‘"“'—"/f‘-'ﬂ"'-"\:.::_}'\
> ﬂ) 0 — e — —— - N— —
(n) 6 : 0 50 100 150 200
> S 1k @ ¢

"" 17/29

Learning chaotic time series data 2025.05.30

Possible alternative: adding Jacobian information

For dynamics % = f(x), the Jacobian J(x) = Vx,f(x’)|x,=x(t) governs the dynamics of small perturbations

dx(t) around the state x(t) : (1) + (1)
X

(Variational equation)

déx d(x+6x) dx . |
== fx + 8x) — f(x) = J(x)8x + 0(6x) (A

160 = 160)] &

Leading Lyapunov
Vector is apparent
after sufficient time

. . 1 ||6x t ” evolution
Maximum Lyapunov exponent A; = lim -log Ollz .
t—oo t [162(0) I
1fi 1+i1v/1 1niti 1+1 Uniform perturbations
> quantifies sensitivity to initial conditions e

the system evolves

For n-D dynamics, there are n Lyapunov exponents A; = - > 1,

Dynamical invariants!

Initial Uniform
Perturbations

18/29

Learning chaotic time series data 2025.05.30

Possible alternative: adding Jacobian information

For 1 step training, explicitly providing Jacobian information results in statistically accurate models

-1
13 ~ 112 t;
Lyse(0) = Eznxﬁl — X4l X1 = X; + ftil“ NN (x(t); 8)dt : 1-step model predictions
i=0
1n—1 _
~ x;)=V. NN(x':0)|, _ : Jacobian of the model dynamics
Lac® = Luss @)+ > [Jx) —Jepl, /T TNV Ol Y
i=0
TRUE 5000 MSE MLP JAC_MLP - Empirical Density
40|’ 7 | ARPTE E H40 1 True
3 4 o 3 0.050
N 1000 - & ; =1 WA=
20 20 7 BF |B20 025 1 JAC
+ 0 = j
—20 0 20 250 500 750 -20 0 20 0.000—53
X X X

No noise, ground truth Jacobian supplied > Can we extend this to a more realistic setting?
19/29

Neighborhood-aware training for Neural ODEs

Neighborhood-aware training for Neural ODEs 2025.05.30

Learning Jacobians from measured data

: : : d :
Given time series data {t;, x;}i=, generated from d—: = f(x), how do we estimate J(x;)?

Widely researched in the chaos literature from the 80s; two major methods exist

Global method:

. . ~ A L . 1 ~
Train an autoregressive model X;,; = f(X;;) to minimize the trajectory error L(0) = mzi(xi — %;)?

After training, estimate via fo(x)|x_x_ ~ [+ J(x;)At;
-
(+) Only single global model is trained; Basically identical to conventional model training

(-) Learning function values from sampled points do not guarantee accurate derivatives, especially for
noisy data

21/29

Neighborhood-aware training for Neural ODEs 2025.05.30

Learning Jacobians from measured data

: : : d :
Given time series data {t;, x;}i=, generated from d—: = f(x), how do we estimate J(x;)?

Local method:

. — . dé . .
Inspired by the variational equation d_tx = J(x)8x + 0((6x)?) 8x : Infinitesimal perturbations around state x

Perturbations 8x are estimated using nearby neighbors in phase space:

22/29

Neighborhood-aware training for Neural ODEs 2025.05.30

Learning Jacobians from measured data

Local method:

Foreachi =0,1,...,n

Train a local model Sx(]) Df; (6x(]) 0;) by minimizing the 1-step evolution of the neighbor distances:
l l

1,0’
1
£(6)) =—Z sx) — 8x) (0
l nneighbors - ((l))
. 57, = - A7)

For local linear models Df; = A;, ° Sx (J)

; i,0

A; = 1+](x;)A¢; a5 /\ x](l)+1

xl+1
(+) Models are directly conditioned on the dynamics generated by the

Jacobian

(-) Requires fitting one model per single point estimation of the Jacobian

23/29

Neighborhood-aware training for Neural ODEs 2025.05.30

Neighborhood-aware training

Goal: For x = f(x), train model to satisfy both fyy(x;0) = f(x) and V,fyn(x;0) = V,f(x)

Nneighbors

0. Prior to training, identify the indices of the neighborhood points {xj(l-) for each data point x;

1. Generate predictions from the neural ODE using

d% _ N
q fun (X; 0) xX(0) = x;
oo (%)

déx _ — i o o ()
— = Vofun (% 0) - 8% 5x(0) = 6x; 0%,

Computed from fyy (X; 8) using automatic differentiation!
Taylor mode autodiff for higher order expansion also possible

2. Minimize the loss function

S Nneighbors
2 1 . = ()
L(9) = 14k = Xivellz + o —— ||xj(i)+k — Xivk — 0x; ”
T k=1 neighbors =
Trajectory loss Neighborhood loss

24/29

Preliminary results & Outlook

Preliminary results & Outlook 2025.05.30

Preliminary results

Models were trained with 5-step segments, and 25 neighbors were used for our method

Train data Train-time prediction Inference-time prediction

26/29

Preliminary results & Outlook 2025.05.30

Preliminary results

The learned Jacobians were compared against the ground truth analytical Jacobian

iﬂ.?ﬁ

-0.50

Vanilla Neighborhood-aware (ours)

-0.25
-0.00

|/ true Ol

—-0.25

”]true (x) — Jpred (x; 0) ”F

—-0.50
-0.75

logqo

Better Jacobians recovered!

27/29

Preliminary results & Outlook

2025.05.30

Assessing statistical accuracy

To gauge statistical accuracy, the Lyapunov spectrum of the trained models were estimated

Lyapunov spectrum: train length = 5, noise = 0.02

L e

0.7 0.8 0.9 1.0 1.1
A1(t) Ground truth

mam Vanilla

e 10001 : Neighborhood (ours)
é 0 | | —-.—Lﬂ | | ——- Literature
-0.20 -0.15 -0.10 -0.05 0.00 0.0 0.10 0.15
A(t)
I
500 { i :
0 | | | | |
-100 —-80 —60 -40 -20
As(t)

Despite better Jacobians, improvement in statistical accuracy is marginal!

28/29

Summary and Outlook 2025.05.30

Summary & Outlook

For chaotic systems, training models that are statistically accurate is important

Training models to properly learn the unknown dynamics and its Jacobian has the
potential to produce better models

Current neighborhood-aware training does produce more accurate Jacobians, but
improvement in model performance is marginal

Further algorithmic improvements & investigations are to be conducted

- Optimal selection of neighbors - Higher order Taylor expansions for
- Different loss functions neighborhood dynamics

29/29

Thank you

	Neighborhood-aware training of NeuralODEs to �(accurately) predict dynamical invariants of chaotic systems
	Contents
	Data-driven discovery of dynamical systems
	Autoregressive time-series models
	Neural Ordinary Differential Equation
	Obtaining model predictions
	Training Neural ODEs
	Why Neural ODEs?
	Why Neural ODEs?
	Pre-KIAS: Stabilize Neural ODE training on long data
	Pre-KIAS: Stabilize Neural ODE training on long data
	Pre-KIAS: Stabilize Neural ODE training on long data
	Learning chaotic time series data
	Chaotic systems
	Impossibility of exact long-term predictions
	Dynamic invariants of chaotic systems
	Explicitly using dynamical invariants in training
	Possible alternative: adding Jacobian information
	Possible alternative: adding Jacobian information
	Neighborhood-aware training for Neural ODEs
	Learning Jacobians from measured data
	Learning Jacobians from measured data
	Learning Jacobians from measured data
	Neighborhood-aware training
	Preliminary results & Outlook
	Preliminary results
	Preliminary results
	Assessing statistical accuracy
	Summary & Outlook
	Thank you

