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Motivation for Neural Operators

Consider the following linear PDE problem as an example:

Lu = f on D
u = 0 on ∂D.

Where L is a linear differential operator. The solution to this problem can
be expressed as the convolution of a kernel function G (x , x ′) which
depends on L and D with a function f .
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Motivation for Neural Operators

Mathematically, this can be represented as follows:

u(x) = G ∗ f (x) =
∫
D G (x , x ′)f (x ′)dx .

In this Dirichlet problem, the solution can be regarded as an integral
operator that maps the source term f to the solution u.
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Definition of Neural Operators

Neural Operator is composed as following:

Gθ = NQ ◦ AL ◦ · · · ◦ A1 ◦ NP .

Where each NQ , NP , Ai are projection layer, lifting layer, and kernel
integration layers respectively.
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Definition of Neural Operators

Here, each kernel integration layer Ai is defined as follows:

Ai (v) := σ(Wloc,i (v) +Ki (v)).

Where Wloc,i is a sub-network that acts locally, and Ki is an integral
kernel operator represented as follows:

Ki (v)(x) =
∫
Di−1

k i (x , y)v(y)dµ(y).

Where k i ∈ C (Di × Di−1;Rdvi×dvi−1 ) and µ is a measure on domain Di−1.
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Discretization of functional Data

Neural Operators process functional data, but to numerically handle
functions, it is necessary to convert them into finite-sized data. To achieve
this, we select specific points D̃ = {x1, . . . , xn} ⊂ D in the domain D on
which functions will be evaluated.
As a result, the input function a and target function u can be

represented as vectors a|D̃ ∈ Rn×da and u|D̃ ∈ Rn×da .
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Problem Setting

The main task of Neural Operators is approximate operator G(a) = u. To
achieve this, we solve following minimization problem:

minθ Ea∼µC (G(a),Gθ(a))

For this, we aim to minimize the empirical loss function, which measures
the difference between Gθ(ai ) and ui = G(ai ) on the training dataset.
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Fourier Neural Operator

The Fourier Neural Operator is implemented via treating convolution
operator in kernel integration layer by Fourier transform:

K(v)(x) =
∫
D k(x − y)v(y)dµ(y) = F−1

(
Rk · (Fv)

)
(x).
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Fourier Neural Operator

Since we treat discretized objects, the kernel integration can be rewritten
as follows:

F̂
(
K(v |D̃)

)
k, l =

∑dv
j=1 Rk,l ,j · (F̂v)k , j

where F̂ denotes the Fast Fourier Transform (FFT). And we only use
truncated frequency components. The truncation of frequencies is
expressed by the maximal number of modes:

kmax = |{k ∈ Zn : |kj | ≤ kmax,j for j = 1, . . . , n}|
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Hyperbolic Conservation Laws

The conservation law can be rewritten in quasi-linear form as follows:

Ut +
∂F (U)
∂U

∂U
∂x = 0.

If the Jacobian ∂F (U)
∂U has m real eigenvalues and is diagonalizable, we say

that the above equation is hyperbolic.
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Numerical Schemes

A theorem exists regarding certain types of numerical methods that
guarantee good quality. These methods are called ”conservative methods”
and have the following form:

Un+1
j = Un

j − k

h
[F̂ (Un

j−p, . . . ,U
n
j+q)− F̂ (Un

j−p−1, . . . ,U
n
j+q−1)] (1)

We define the numerical flux as consistent when the following conditions
are satisfied:

F̂ (u, . . . , u) = F (u), ∀u ∈ R

|F̂ (Uj−p, . . . ,Uj+q)− F (u)| ≤ K max
−p≤i≤q

|Uj+i − u|. (2)
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Loss for Flux NO

Motivated by equations (1) and (2), we design the loss function for our
Flux NO model as follows:

Ltm(U) = ΣN
n=0∥Un+1 − Un +

tn
k
[G (Un

−p, . . . ,U
n
+q; θ)

−G (Un
−p−1, . . . ,U

n
+q−1; θ)]∥22.

Lconsi (U) =
N∑

n=0

∥G (Un, . . . ,Un; θ)− F (Un)∥22.

L({Ui},G (·; θ)) = Σm
i=1(Ltm(Ui ) + λLconsi (Ui )), 0 ≤ λ.

Here, U corresponds to the vectorized functional data, and the data
structure follows the format [batch size,Nt ,Nx ,Np]. G represents the
Neural Operator model, which takes as input the function concatenated
along the last index. In our case, we used FNO for G .
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Algorithm for Flux NO
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Algorithm for Flux NO
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Experiments (1D Burgers)

We conducted experiments on 1D linear advection and the Burgers’
equation, which are simple types of HCLs.

∂u

∂t
+ c

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
= 0
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Experiments (1D Burgers)

(∆t,∆x)
Number of
functions

Domain of
function

Overall shape
of dataset

Training
for B.E

(10−22−8, 2−8) 10 [0, 0.3]× [0, 1] [760,100,256,1]

Test
for B.E

(10−22−8, 2−8) 10 [0, 0.6]× [0, 1] [10,1520,256,1]

Table: Specifications of training and testing datasets
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Experiments (1D Burgers)

width
depth of

Fourier layers
Number of
modes

Batch size
(Advection, Burgers)

Flux FNO 64 1 5 (1, 1)

1D FNO 64 1 5 (1, 1)

1D FNO(heavy) 32 3 20 (1, 1)

2D FNO 64 3 (10, 10) (10, 10)

Table: Specification of architectures and hyperparameters

Taeyoung Kim Flux Neural Operator May 30, 2025 20 / 42



Experiments (1D Burgers)

Figure: Output of Flux FNO (dashed line with triangle markers) compared with
the exact solutions (solid line) for the 1D Burgers’ equation problem.
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Experiments (1D Burgers)

Figure: Comparison of Flux FNO output with the exact solutions and other FNO
models at t = 0.30 (left), and t = 0.60 (right) for the 1D Burgers’ equation
problem.
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Experiments (1D Burgers)

(relative L2, L∞) t=0.30 t=0.60

Flux FNO (0.049, 0.21) (0.052, 0.13)

1D FNO(heavy) (6.55, 7.53) (11.20, 7.32)

1D FNO 10.08, 4.94) (19.09, 4.81)

2D FNO (1.36, 1.65) (2.21, 1.26)

Table: Quantitative results of each model for the 1D Burgers’ equation problem.
Each value represents the mean over the test dataset.
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Experiments (1D Burgers)

Figure: Inference of Flux FNO on out-of-distribution samples for the 1D Burgers
equation problem: square wave.
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Experiments (1D Shallow water)

Figure: Output (H) of Flux FNO (dashed line with triangle markers) compared
with the exact solutions (solid line) for the 1D Shallow water equation problem.
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Experiments (1D Shallow water)

(relative L2, L∞) t=0.05 t=0.15

Flux FNO (3.58e-3, 4.57e-3) (9.56e-3, 6.26e-3)

2D FNO (7.74e-3, 9.80e-3) (1.59e-2, 1.55e-2)

Table: Quantitative results of each model for the 1D Shallow water equation
problem. Each value represents the mean over the test dataset.
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Experiments (1D Shallow water)

Figure: Inference of Flux FNO on out-of-distribution samples for the 1D Shallow
water equation problem with initial condition is sqaure pulse: U (left), UH (right).
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Ideal Magnetohydrodynamics (Ideal MHD)

ρt +∇ · (ρu) = 0,

(ρu)t +∇ ·

[
ρu⊗ u+

(
p +

1

2
∥B∥2

)
I− B⊗ B

]
= 0,

Bt +∇ · (u⊗ B− B⊗ u) = 0,

Et +∇ ·

[(
E + p +

1

2
∥B∥2

)
u− B(u · B)

]
= 0.

where u represents velocity, B the magnetic field, ρ density, E energy, and
p pressure. Additionally, according to Maxwell’s equations, the magnetic
field must satisfy the divergence-free condition, which is expressed as:

∇ · B = 0.
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Enhanced Loss Function for Ideal MHD

Motivated from TVD property of numerical scheme, we devise following
loss:

LTVD({Ui}Bi=1) :=
B∑
i=1

Nt−1∑
n=1

⌊TV (Ũi ,n+1)− TV (Ui ,n)⌋2+.

where ⌊·⌋+ := max(0, x) and Ũ is an output of Flux NO.
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Enhanced Loss Function for Ideal MHD

To obtain divergence freeness of magnetic field, we consider following
equation:

∇ · ∂U
∂t

=
∂∇ ·U
∂t

= ∇ ·
(
− ∂G

∂x
− ∂F

∂y

)
⇒ 0 =

∂∇ · B
∂t

= ∇ ·
(
− ∂G

∂x
− ∂F

∂y

)
B
.

From above equation, we get following:

Ldiv ({Ui}Bi=1) :=

B∑
i=1

Nt−1∑
j=1

⌊
∥∇ ·∆R(Ui ,j ; θ)B∥22 − θdiv
|∥∇ ·∆R(Ui ,j ; θ)B∥22 − θdiv |

⌋
+

∥∇ ·∆R(Ui ,j ; θ)B∥22.

where θdiv is the threshold value.
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Enhanced Loss Function for Ideal MHD

Utilizing the l∞ norm allows for the expectation of pointwise convergence,
thereby enabling a more accurate approximation of the flux embedded in
the training dataset.

L∞({Ui}Bi=1) :=
B∑
i=1

Nt−1∑
n=1

Nu∑
l=1

sup
j ,k

(
(Ui ,n+1,j ,k,l−Ui ,n,j ,k,l)−∆R(Ui ,n,j ,k,l ; θ)

)
.
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Experiments (2D Ideal MHD)
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Experiments (2D Ideal MHD)

(M, SD) t=0.5 t=0.75

rel l2ρ (2.5e-3, 1.11e-1) (6.7e-3, 1.11e-1)

rel l∞ρ (4.24e-7, 1.09e-1) (5.51e-6, 1.09e-1)

rel l2u (4.7e-3, 1.11e-1) (1.02e-2, 1.11e-1)

rel l∞u (3e-4, 1.10e-1) (1e-3, 1.10e-1)

rel l2B (3.5e-3, 1.11e-1) (7.8e-3, 1.11e-1)

rel l∞B (2e-4, 1.10e-1) (7e-4, 1.10e-1)

rel l2E (3e-3, 1.11e-1) (8.1e-3, 1.11e-1)

rel l∞E (1.6e-3, 1.10e-1) (2.7e-3, 1.11e-1)

Table: Means (M) and Standard Deviations (SD) of Relative l2 and l∞ Norms
Between the Output of Flux NO and Reference for Each Component at Short
Term Times in the Two-Dimensional Case, Across 10 Test Samples.
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Experiments (2D Ideal MHD)
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Experiments (2D Ideal MHD)

(M, SD) t=1.5 t=2.0

rel l2ρ (1.62e-2, 1.11e-1) (2.45e-2, 1.11e-1)

rel l∞ρ (2.78e-5, 1.10e-1) (4.90e-5, 1.10e-1)

rel l2u (2.91e-2, 1.11e-1) (4.68e-2, 1.11e-1)

rel l∞u (6.6e-3, 1.11e-1) (1.98e-2, 1.11e-1)

rel l2B (2.39e-2, 1.11e-1) (3.59e-2, 1.11e-1)

rel l∞B (9.2e-3, 1.11e-1) (1.63e-2, 1.11e-1)

rel l2E (1.69e-2, 1.11e-1) (3.16e-2, 1.11e-1)

rel l∞E (8.6e-3, 1.11e-1) (4.4e-2, 1.11e-1)

Table: Means (M) and Standard Deviations (SD) of Relative l2 and l∞ Norms
Between the Output of Flux NO and Reference for Each Component at Long
Term Times in the Two-Dimensional Case, Across 10 Test Samples.
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Experiments (2D Ideal MHD)

To test our model on OOD sample, we addressed the Orszag-Tang
problem. The initial conditions for the Orszag-Tang problem are described
as follows:

ρ(x , y , 0) = γ2, vx(x , y , 0) = − sin y , vy (x , y , 0) = sin x ,

p(x , y , 0) = γ, Bx(x , y , 0) = − sin y , By (x , y , 0) = sin 2x ,

uz(x , y , 0) = Bz(x , y , 0) = 0.

When given the initial conditions of the Orszag-Tang problem, the solution
at t = 0.25 was used as the initial condition.
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Experiments (2D Ideal MHD)

Figure: Snapshot of the Output from Flux NO and Reference Data at t = 0.5 and
t = 0.75 for the Orszag-Tang Vortex Problem.
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Experiments (2D Ideal MHD)

Figure: Snapshot of the Output from 3D FNO at t = 0.5 (top left), t = 0.75 (top
right), t = 2.0 (bottom left) and t = 3.0 (bottom right) for the Orszag-Tang
Vortex Problem.
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Experiments (2D Ideal MHD)

Models
Inference Time
for ∆t = 0.5

Number of Parameters

Flux NO 4.16e-1s (4.16e-3s) 8,204,176

2D FNO 3.04e-3s 1,022,264

2D FNO (heavy) 4.74e-3s 8,355,064

3D FNO 1.81e-2s (9.05e-3s) 7,990,064

WENO-Z 1.05e+1s (1.05e-1s)

WENO-Z (on PyTorch) 9.98e+0s (9.98e-2s)

Table: Comparisons of Flux NO with Other Standard FNO Models: Memory
Requirements and Inference Times. The time in parentheses represents the
inference time for a single run.
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Thank you for listening!
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