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Background and motivation Quantization of Neural networks

Era of large language models
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Background and motivation Quantization of Neural networks

Small language models
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Background and motivation Quantization of Neural networks

Quantization of neural networks

Simulated quantization (fake quantization)
- quantizing weights only

Integer-only quantization (fixed-point quantization) - quantizing weights and
operations (integer arithmetic)

1

1Gholami, Amir, et al. ”A survey of quantization methods for efficient neural network inference.” Low-power
computer vision. Chapman and Hall/CRC, 2022. 291-326.
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Background and motivation Quantization of Neural networks

Performance of quantization

2

2Gholami, Amir, et al. ”A survey of quantization methods for efficient neural network inference.” Low-power
computer vision. Chapman and Hall/CRC, 2022. 291-326.
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Background and motivation Quantization of Neural networks

Bitnet : binary LLM

3

3Ma, Shuming, et al. ”The era of 1-bit llms: All large language models are in 1.58 bits.” arXiv preprint
arXiv:2402.17764 1 (2024).
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Floating-point and fixed-point arithmetic
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Background and motivation Floating-point and fixed-point arithmetic

Motivation

What is the right answer? 9 or 9.0?
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Background and motivation Floating-point and fixed-point arithmetic

0.1 + 0.2 = 0.3?

0.1 + 0.1 = 0.2?

0.1 + 0.2 ̸= 0.3?

Why does this happen?
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Background and motivation Floating-point and fixed-point arithmetic

Floating point number

Scientific notation:

Binary notation:

Floating point number : approximately express real numbers using binary notation.

̸= Fixed point number : express exact real number.
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Background and motivation Floating-point and fixed-point arithmetic

IEEE754 Floating number standard

32-bit floating number (single precision):

4

value = (−1)b31 × 2(b30...b23)2−127 × (1.b22 . . . b0)2

= (−1)sign × 2E−127 × (1 +

23∑
i=1

b23−i2
−i)

64-bit floating number (double precision):

5

4https://en.wikipedia.org/wiki/Single-precision-floating-point-format
5https://en.wikipedia.org/wiki/Double-precision-floating-point-format
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Background and motivation Floating-point and fixed-point arithmetic

Floating point arithmetic rule : Rounding

Rounding Rule:

Round to nearest, ties to even

Round to nearest, ties away from zero

6

6https://en.wikipedia.org/wiki/IEEE754
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Background and motivation Floating-point and fixed-point arithmetic

Floating point arithmetic rule

⌈⌋: Rounding operation.

Basic rule:

x⊕ y = ⌈x+ y⌋, x⊗ y = ⌈x× y⌋

Multiple operations:

x⊕ y ⊕ z = (x⊕ y)⊕ z = ⌈⌈x+ y⌋+ z⌋

x1 ⊕ · · · ⊕ xn = (...(x1 ⊕ x2)⊕ · · · ⊕ xn) = ⌈...⌈⌈x1 + x2⌋+ . . . ⌋+ xn⌋.

In general, floating point addition/multiplication is not associative:

(x⊕ y)⊕ ̸= x⊕ (y ⊕ z).
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Background and motivation Floating-point and fixed-point arithmetic

GNU C Library (libc)
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Background and motivation Floating-point and fixed-point arithmetic

Fixed-point arithmetic

p-bit fixed-point arithmetic : [0, 2b − 1]Z → [α, β]R.

x = α+ (β − α)
k

(2b − 1)
, k ∈ [0, 2b − 1]Z.

Quantization:

q = ⌈clip(x, [α;β])− α

s
⌋, s =

2b − 1

β − α
x ∈ R.

Quant(x) = α+
q

s
∈ [α, β], k ∈ [0, 2b − 1]Z.
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Background and motivation Floating-point and fixed-point arithmetic

Fixed-point arithmetic

Rounding rule : ”away from zero”.

accumulation in high-precision.

7

7https://github.com/tensorflow/tensorflow/blob/4952f981be07b8bf508f8226f83c10cdafa3f0c4/
tensorflow/contrib/lite/kernels/internal/reference/reference ops.h
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Background and motivation Floating-point and fixed-point arithmetic

Motivation : Rounding error
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Background and motivation Floating-point and fixed-point arithmetic

Motivation : Rounding error

Two-layer network f : R257 → R defined as

f(x) = 2

ReLU

⌈
129∑
i=1

w1,ixi⌋

 + ReLU

⌈
257∑
i=1

w2,ixi⌋


+ 3

−1 × ReLU

⌈
129∑
i=1

w3,ixi⌋

 + 2

−1 × ReLU

⌈
65∑
i=1

w4,ixi⌋

 .

(w1,1, w1,2, w1,3, . . . , w1,129) =

(
1,−

1

256
, . . . ,−

1

256

)
,

(w2,1, w2,2, w2,3, . . . , w2,257) =

(
−1,

1

256
, . . . ,

1

256

)
,

(w3,1, w3,2, w3,3, . . . , w3,129) =

(
−1,

1

128
, . . . ,

1

128

)
,

(w4,1, w4,2, w4,3, . . . , w4,65) =

(
−1,

1

128
, . . . ,

1

128

)
.

f(−1) = −1, f(1) = 1,

⌈f⌋(−1) = 1, ⌈f⌋(1) = −1.
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Universal approximation theorem
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Universal approximation theorem Universal approximation theorem under real opeartions

Universal approximation theorem under real opeartions
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Universal approximation theorem Universal approximation theorem under real opeartions

Expressive power of neural networks

Neural network represent real-world unknown target function
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Universal approximation theorem Universal approximation theorem under real opeartions

Expressive power of neural networks

Real-world unknown target function?
→ No mathematical definition!
→ just continuous function.
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Universal approximation theorem Universal approximation theorem under real opeartions

Expressive power of neural networks

Expressive ability:
How much can neural network approximate given target function

Universal approximation:
Neural network can approximate any continuous functions.
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Universal approximation theorem Universal approximation theorem under real opeartions

Universal approximation theorem8

Theorem (Cybenko (1989), universal approximation for sigmoid activation)

Let σ ∈ C(R) be sigmoid function. Then for any continuous function f ∈ C([0, 1]n,R),
ϵ > 0 such that there exists a 2-layer network NN(x) such that

∥f(x)−NN(x)∥ < ϵ

where NN(x) = W2σ(W1x+ b1) + b2.

8Cybenko, George. ”Approximation by superpositions of a sigmoidal function.” Mathematics of control,
signals and systems 2.4 (1989): 303-314.
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Universal approximation theorem Universal approximation theorem under real opeartions

Universal approximation theorem9

Theorem (Leshno (1993), universal approximation for non-polynomial activation)

Let σ ∈ C(R) and assume σ is non-polynomial. Then for any compact set K ∈ Nd,
continuous function f ∈ C(K,Rm), ϵ > 0 such that there exists a 2-layer network
NN(x) such that

∥f(x)−NN(x)∥ < ϵ

where NN(x) = W2σ(W1x+ b1) + b2.

9Leshno, Moshe, et al. ”Multilayer feedforward networks with a nonpolynomial activation function can
approximate any function.” Neural networks 6.6 (1993): 861-867.
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Universal approximation theorem Universal approximation theorem under real opeartions

Expressive power of ReLU Network 10

Theorem (Yarotsky (2017), Expressive power of ReLU Network)

Let σ ∈ C(R) be ReLU. Then for continuous function f ∈ C([0, 1]d,R), ϵ > 0 such that
there exists a ReLU network NN(x) which has O(log( 1

ϵ
) + 1) depth O(ϵ−d(log( 1

ϵ
) + 1))

parameters such that

∥f(x)−NN(x)∥ < ϵ.

10Yarotsky, Dmitry. ”Error bounds for approximations with deep ReLU networks.” Neural Networks 94
(2017): 103-114.
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

Universal approximation theorem under fixed-point arithmetic
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

Setup

(p+ 1)-bit symmetric quantization.

[−(2p − 1), 2p − 1]Z → [−(2p+1)
s

, 2p−1
s

]R.

Qp,s =

{{
q
s
: q ∈ [−2p + 1, 2p − 1] ∩ Z

}
if p < ∞,{

q
s
: q ∈ Z

}
if p = ∞.

(1)

Condition

For an activation function σ : R → R and Qp,s,

⌈σ⌋(x) = max⌈σ⌋(Qp,s) for all x ∈ Qp,s such that x ≥ z,

⌈σ⌋(x) < max⌈σ⌋(Qp,s) for all x ∈ Qp,s such that x < z.

Lemma

If σ : R → R is monotone and ⌈σ⌋ is non-constant on Qp,s, then σ and Qp,s satisfy the
condition.

Furthermore, popular non-monotone activation functions such as GELU, SiLU, and Mish
also satisfy the condtion for all Qp,s.
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

First step: gap indicator function

qmax = maxQp,s.

ϕ(x) =

(
− ⌈σ⌋ (⌈x− α+ z⌋) + ⌈σ⌋ (qmax)− ⌈σ⌋ (⌈−x+ β + z⌋) + ⌈σ⌋ (qmax)

)
.

ϕ(x) =

{
0 if x ∈ [α, β],

> 0 if x[α, β]

g(x) = −⌈σ⌋
(
⌈m× qmax × ϕ(x) + z − 1

s
⌋
)
+ ⌈σ⌋ (qmax)

=

{
⌈σ⌋ (qmax)− ⌈σ⌋

(
z − 1

s

)
if x ∈ [α, β],

0 if x[α, β].
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

First step: gap indicator function

For any q ∈ Qp,s, let mq be an integer satisfying

mqqmax ×
(
⌈σ⌋ (qmax)− ⌈σ⌋

(
z − 1

s

))
> 2qmax.

Then we have

F q(x) = ⌈σ⌋ (⌈q +mq (qmax × g(x))⌋)− ⌈σ⌋ (q) ,

=

{
⌈σ⌋ (qmax)− ⌈σ⌋ (q) if x ∈ [α, β],

0 if x[α, β].
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

Second step: universal approximator

Vσ,p,s = {⌈σ⌋(x)− ⌈σ⌋(y) : x, y ∈ Qp,s} , (2)

S◦
σ,p,s,b =

{
b+

n∑
i=1

wixi : n ∈ N0, wi ∈ Qp,s, xi ∈ Vσ,p,s ∀i ∈ [n]

}
, (3)

Sσ,p,s,b =
{
⌈z⌋ : z ∈ S◦

σ,p,s,b

}
. (4)

Lemma (2)

If σ is differentiable on
(
0, 2

s

)
, 1

2
≤ σ′(x) < 1 and |σ(x)| ≤ 2p−1

s
for x ∈

(
0, 2

s

)
,

ReLU, ELU, SiLU, Mish, and GELU∣∣∣∣⌈σ⌋(k + 1

s

)
− ⌈σ⌋

(
k

s

)∣∣∣∣ ≤ 1

s
.
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

Third step: universal approximation

Theorem

Let σ : R → R and p, s ∈ N. Suppose that σ : R → R and Qp,s satisfy Condition 1. If
there exists b ∈ Q∞,s such that

Sσ,p,s,b = Qp,s, (5)

then σ quantized networks under Qp,s can universally approximate.

Theorem (universal approximation under fixed-point arithmetic with unbounded
exponent)

For any p ∈ N, d ∈ [2p], f∗ ∈ C([0, 1]d,R), and ε > 0, there exists a σ-quantized
network f( · ;Qp,s) : Qd

p,s → Qp,s of 3 layers such that

|f(x;Qp,s)− f∗(x)| ≤
∣∣f∗(x)− ⌈f∗(x)⌋Qp,s

∣∣+ ε.
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Universal approximation theorem Universal approximation theorem under fixed-point arithmetic

Thank you
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