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Introduction 2025.05.30

Data-driven discovery of dynamical systems

Physical system State observations Discovered dynamics
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1. Discover new science 2. Forecast future dynamics 3. Use as dynamics surrogates
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Autoregressive time-series models

Models of the form:

x; . State prediction at time ¢;
0 : Trainable model parameters

Xiv1 = F(t;, x;;0)

Training : Generate predictions {xi}?’zo from initial condition xg, tune @ to minimize trajectory error

OUTPUT VALUE IN TIME “t"

()
Ex 1) Parametrized ODE models with to-be-determined coefficients |
- _, NEURON
Ex 2) Recurrent Neural Networks (RNNSs) T STATE
&

Ex 3) Neural Ordinary Differential Equations (Neural ODESs)

CURRENT INPUT IN TIME ‘t'

hi = RNN(hi_l,Xi; 0)
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Neural Ordinary Differential Equation

A Neural ODE is given by,

d
x(t=0) =%, — (0= fun(tx(6);6)

R R dx(t) L
Neural network : x(t) = NN(t;p) Neural ODE: ——— = NN (X, t;p)

"

sssssss

p : Network parameters p : Network parameters

— models the state trajectory — models the state dynamics
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Obtaining model predictions

Cannot analytically integrate neural networks > Use a numerical ODE solver algorithm!

Euler method:
Upi1 = Uy, + NN(nAt,u,; 0) - At

Runge-Kutta 4% order method: S 6
1
Up+1 = Up + g . (kl + kz + k3 + k4,) - At ey
k1 = NN(nAt, Uy, 0) —& F;w:-*
1 At
k =NN< + Y Atu, +k -E;e)

3 (n 2) nt 2 to to+ At to toth t

ks = NN((n + 1)At u, + k3 - At; 0)
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Training Neural ODEs

Trajectory prediction Loss calculation

dz(t) QOO O
= NN(;Z, t: 9) # f(t) = f(to) + f \ 5O - «@
to 0

~ ODESolve (NN (56 t; 67) , fo)

\

p A
X1
x|

’.-.

-]

-

-2
)

Parameter update (gradient descent)
6 « 6 —nVzL(6)
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Why Neural ODEs?

* A natural choice to model continuously varying phenomena

» Handling missing / irregular time points is trivial

(a) Recurrent Neural Network

00 05 10 15 20 00 05 10 15 20
Time Time
(b) Latent Neural Ordinary Differential Equation (a) Latent ODE (ODE enc) ( d) Standard RNN
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Why Neural ODEs?

* Functional form of the differential equation is always simpler than that of its solution

x=Ax vs x(t) =4t

« Straightforward to incorporate partial knowledge of the system dynamics
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Pre-KIAS: Stabilize Neural ODE training on long data

. dx 5
Unknown data dynamics: % = F(t, Xqqta)

* Uncoupled « Synchronized

dXpred = n N v v
Model: —2=% = NN (t, Xpreds 9) '9) — k(Xprea — Xaata)

Coupling term @H’“

dt

: ?épred (t)

« A proportional coupling term can synchronize the model dynamics with the data trajectory

* Prevents the untrained model from diverging away from data and produces better loss landscapes 10/29



Stabilizing model training
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Pre-KIAS: Stabilize Neural ODE training on long data

« Vanilla training

Optimization trajectory

1.0

~ 05

0.0

« Homotopy optimization

dfpred _ - A > > ‘
dt = NN (¢, Xpreds 0)— Ak (xpred xdata)
Homotopy parameter
A=1
A = 1: Strong coupling smoothed .\‘
A=0:
—ﬂmal NeuralODE 1
0 200 400 o0  Oriemal
Epoch A=0

« Start with a simple proxy problem, and continuously transform back to the original difficult problem

 Effectively avoids bad local minima
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Pre-KIAS: Stabilize Neural ODE training on long data

* Interpolation Error

2.
101{ I Homotopy 8
B Multishoot
(= B Vanilla T o
o 10-4
-g 1004 =
© L
©° [=]
o
g O 1004
= 10714 £
£ i
w L
(%3] wn -
2 1072 = 107
10—2..

Black Box Gray Box Black Box Second Order Black Box

Lotka-Volterra Double Pendulum Lorenz

Different datasets / models

* Extrapolation Error

Black Box Gray Box Black Box Second Order Black Box

Lotka-Volterra Double Pendulum Lorenz

Different datasets / models

J. H. Ko et al. NeurIPS (2023).
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* Training epochs

Black Box Gray Box Black Box Second Order Black Box

Lotka-Volterra Double Pendulum Lorenz

Different datasets / models

* Models trained with the homotopy method have stronger interpolation / extrapolation performance

» Required training epochs are also greatly reduced
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Learning chaotic time series data

Chaotic systems

Chaos: “Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence

on initial conditions”

Lorenz equations

|"“50
|

|T-;w
e x=0(y—x)

o oy=x(p—2)—y

x(1) +6(1)

. 18 = 160 e |
* | is amplified exponentiall ? S — _
SO xr) P P 4 |, z=xy—pz
(butterfly effect) P
Smallinitial change... T

Ubiquitous in nature: weather data, fluid flow, population dynamics, cardiac signals, etc..
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Impossibility of exact long-term predictions

Chaotic dynamics are sensitive to changes in the equation parameters as well

Ex) Lorenz system trajectories with slightly different parameters

I 1] M
I'“" ||.|‘|’.l|’|. |'1|""||'|"|'|'\"ll I o, p,B) = (10,28.0,5
UL LTI

Even if the trained model is very close to the ground truth, exact trajectory predictions fail after

some characteristic time
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Dynamic invariants of chaotic systems

However, chaotic systems have well-defined long-term, global characteristics

Ex) Strange attractors: Fractal structure in phase space that all trajectories converge onto after some finite time

ENNRN 0N # N\ @ -
N\ Aoy \W‘%@@\\ Q)
CrdNN HONNNE

LSS

@ = @04\\\2‘? 1&%N)
VYL &\@wm@b@w
cLF B SO
@QelP@CAYIMD
FEO e %@@w@@@
EF DG RER 4*NGBO|..

Ex 2) Statistics computed over points on the attractor / along long temporal trajectories: Well-defined, invariant with
respect to the dynamics

>
Uy jueuodxg AnoundeAq

Goal of chaotic time series learning: Train models that are “statistically accurate”
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Difficulty of learning long time-series data 2025.05.30

Explicitly using dynamical invariants in training

Dynamical invariants can be explicitly incorporated into model training to enhance model performance

Total loss = Trajectory loss + Dynamical invariant loss
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Possible alternative: adding Jacobian information

For dynamics % = f(x), the Jacobian J(x) = Vx,f(x’)|x,=x(t) governs the dynamics of small perturbations

dx(t) around the state x(t) : (1) + (1)
X

(Variational equation)

déx d(x+6x) dx . |
== fx + 8x) — f(x) = J(x)8x + 0(6x) (A

160 = 160)] &

Leading Lyapunov
Vector is apparent
after sufficient time

. . 1 ||6x t ” evolution
Maximum Lyapunov exponent A; = lim -log Ollz .
t—oo t [162(0) I
1fi 1+i1v/1 1niti 1+1 Uniform perturbations
> quantifies sensitivity to initial conditions e

the system evolves

For n-D dynamics, there are n Lyapunov exponents A; = - > 1,

Dynamical invariants!

Initial Uniform
Perturbations
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Possible alternative: adding Jacobian information

For 1 step training, explicitly providing Jacobian information results in statistically accurate models

-1
13 ~ 112 t;
Lyse(0) = Eznxﬁl — X4l X1 = X; + ftil“ NN (x(t); 8)dt : 1-step model predictions
i=0
1n—1 _
~ x;)=V. NN(x':0)|, _ : Jacobian of the model dynamics
Lac® = Luss @)+ > [Jx) —Jepl, /T TNV Ol Y
i=0
TRUE 5000 MSE MLP JAC_MLP - Empirical Density
40|’ 7 | ARPTE E H40 1 True
3 4 o 3 0.050
N 1000 - & ; =1 WA=
20 20 7 BF  |B20 025 1 JAC
+ 0 = j
—20 0 20 250 500 750 -20 0 20  0.000—53
X X X

No noise, ground truth Jacobian supplied > Can we extend this to a more realistic setting?
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Learning Jacobians from measured data

: : : d :
Given time series data {t;, x;}i=, generated from d—: = f(x), how do we estimate J(x;)?

Widely researched in the chaos literature from the 80s; two major methods exist

Global method:

. . ~ A L . 1 ~
Train an autoregressive model X;,; = f(X;; ) to minimize the trajectory error L(0) = mzi(xi — %;)?

After training, estimate via fo(x)|x_x_ ~ [ + J(x;)At;
-
(+) Only single global model is trained; Basically identical to conventional model training

(-) Learning function values from sampled points do not guarantee accurate derivatives, especially for
noisy data
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Learning Jacobians from measured data

: : : d :
Given time series data {t;, x;}i=, generated from d—: = f(x), how do we estimate J(x;)?

Local method:

. — . dé . .
Inspired by the variational equation d_tx = J(x)8x + 0((6x)?) 8x : Infinitesimal perturbations around state x

Perturbations 8x are estimated using nearby neighbors in phase space:
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Learning Jacobians from measured data

Local method:

Foreachi =0,1,...,n

Train a local model Sx(]) Df; (6x(]) 0;) by minimizing the 1-step evolution of the neighbor distances:
l l

1,0’
1
£(6)) =—Z sx) — 8x) (0
l nneighbors - ( ( l))
. 57, = - A7)

For local linear models Df; = A;, ° Sx (J)

; i,0

A; = 1+ ](x;)A¢; a5 /\ x](l)+1

xl+1
(+) Models are directly conditioned on the dynamics generated by the

Jacobian

(-) Requires fitting one model per single point estimation of the Jacobian
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Neighborhood-aware training

Goal: For x = f(x), train model to satisfy both fyy(x;0) = f(x) and V,fyn(x;0) = V,f(x)

Nneighbors

0. Prior to training, identify the indices of the neighborhood points {xj(l-) for each data point x;

1. Generate predictions from the neural ODE using

d% _ N
q fun (X; 0) xX(0) = x;
oo (%)

déx _ — i o o ()
— = Vofun (% 0) - 8% 5x(0) = 6x; 0%,

Computed from fyy (X; 8) using automatic differentiation!
Taylor mode autodiff for higher order expansion also possible

2. Minimize the loss function

S Nneighbors
2 1 . = ()
L(9) = 14k = Xivellz + o —— ||xj(i)+k — Xivk — 0x; ”
T k=1 neighbors =
Trajectory loss Neighborhood loss
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Preliminary results

Models were trained with 5-step segments, and 25 neighbors were used for our method

Train data Train-time prediction Inference-time prediction
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Preliminary results

The learned Jacobians were compared against the ground truth analytical Jacobian

iﬂ.?ﬁ

-0.50

Vanilla Neighborhood-aware (ours)

-0.25
-0.00

|/ true Ol

—-0.25

”]true (x) — Jpred (x; 0) ”F

—-0.50
-0.75

logqo

Better Jacobians recovered!
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Assessing statistical accuracy

To gauge statistical accuracy, the Lyapunov spectrum of the trained models were estimated

Lyapunov spectrum: train length = 5, noise = 0.02

L e

0.7 0.8 0.9 1.0 1.1
A1(t) Ground truth

mam Vanilla

e 10001 : Neighborhood (ours)
é 0 | | —-.—Lﬂ | | ——- Literature
-0.20 -0.15 -0.10 -0.05 0.00 0.0 0.10 0.15
A(t)
I
500 { i :
0 | | | | |
-100 —-80 —60 -40 -20
As(t)

Despite better Jacobians, improvement in statistical accuracy is marginal!
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Summary & Outlook

For chaotic systems, training models that are statistically accurate is important

Training models to properly learn the unknown dynamics and its Jacobian has the
potential to produce better models

Current neighborhood-aware training does produce more accurate Jacobians, but
improvement in model performance is marginal

Further algorithmic improvements & investigations are to be conducted

- Optimal selection of neighbors - Higher order Taylor expansions for
- Different loss functions neighborhood dynamics
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