Machine Learning Riemannian Metrics with Special Holonomy

Tomás S. R. Silva

University of Campinas, Brazil

Recent advances in machine learning are giving pure mathematicians powerful "numerical laboratories." Geometric deep networks, reinforcement-learning agents, and large-language-model copilots now verify intricate calculations, uncover hidden symmetries, and suggest plausible conjectures in complex differential and algebraic geometry.

This tutorial demonstrates how these tools can be combined into end-to-end pipelines that numerically approximate Riemannian metrics with special holonomy. Building on neural-network approximations of Ricci-flat metrics on Calabi–Yau manifolds, we turn to G_{2} -geometry as a working example. A torsion-free G_{2} -structure—specified by a special 3-form on a 7-manifold—yields a metric whose holonomy lies in G_{2} , yet explicit examples remain rare and difficult to obtain. Focusing on 7-manifolds arising as Calabi–Yau links, we present exploratory ML pipelines that probe the geometry and topology of G_{2} -structures and could offer data-driven clues for locating torsion-free cases.

Finally, we argue that the same methodology can serve as a proof of concept for applying machine learning to investigate other H-structures — reductions of the frame bundle to any closed, connected subgroup H \subset \mathrm SO(n)—on oriented n-manifolds whose topology admits such reductions.