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Recent advances in machine learning are giving pure mathematicians powerful 
“numerical laboratories.”ௗGeometric deep networks, reinforcement‑learning agents, and 
large‑language‑model copilots now verify intricate calculations, uncover hidden 
symmetries, and suggest plausible conjectures in complex differential and algebraic 
geometry. 
 
This tutorial demonstrates how these tools can be combined into end‑to‑end pipelines 
that numerically approximate Riemannian metrics with special holonomy. Building on 
neural‑network approximations of Ricci‑flat metrics on Calabi–Yau manifolds, we turn 
to G_{2}-geometry as a working example. A torsion‑free G_{2}-structure—specified 
by a special 3‑form on a 7‑manifold—yields a metric whose holonomy lies in G_{2}, 
yet explicit examples remain rare and difficult to obtain. Focusing on 7‑manifolds 
arising as Calabi–Yau links, we present exploratory ML pipelines that probe the 
geometry and topology of G_{2}-structures and could offer data‑driven clues for 
locating torsion‑free cases. 
 
Finally, we argue that the same methodology can serve as a proof of concept for 
applying machine learning to investigate other H-structures — reductions of the frame 
bundle to any closed, connected subgroup H \subset \mathrm{SO}(n)—on oriented n-
manifolds whose topology admits such reductions. 


