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Introduction

1. Introduction
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Introduction

Why Relativistic Quantum Mechanics?

@ Non-relativistic quantum mechanics does not respect special relativity.

@ The Schrodinger equation is built from the non-relativistic energy

relation:
2

E = pf—l-V(x).

2m
@ To describe high—energy particles, we need a framework that
combines:
© Quantum mechanics
@ Lorentz invariance
@ This naturally points toward quantum field theory, but the first step
is to study relativistic single-particle equations.
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Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025 5/79



Natural Units

Definition

@ Natural units set fundamental constants to 1:
h=1, c=1 (often also kg =1).

e Consequences:

o Energy, momentum, and mass share the same unit (GeV is standard).
e Length and time carry inverse energy units:

1
t = =
t=10=—
o Derivatives carry energy dimension:
[0,] = mass
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Natural Units

Quick Conversions and Heuristics

@ Useful constants:
he =~ 0.1973269804 GeV fm.
@ Core conversions:
1 GeV™! ~0.1973 fm ~ 6.582 x 107 %" s.
@ Cross sections:

[0] = mass™2 = 1 GeV 2 ~ 0.3894 mb.
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Natural Units

Action is Dimensionless

@ In the path integral,

z = /m exp{;S[qﬂ}.

@ The exponent must be dimensionless. Therefore,

@ In natural units 4 = 1, hence S is dimensionless.
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Spacetime Four-Vectors & Minkowski Metric

3. Spacetime Four-Vectors &
Minkowski Metric
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Spacetime Four-Vectors & Minkowski Metric

Spacetime Coordinates

In relativity, space and time combine into a single contravariant
four-vector:
= (t, x) = (t, =, y, 2).

@ We use natural units with ¢ = 1.
@ Index convention:

nw=20123 = xozt, z! =z, x2:y, = z.
e Contravariant vector = components with an upper index (*).

Later, covariant vectors will be written with a lower index ( ).
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Spacetime Four-Vectors & Minkowski Metric

Minkowski Metric (Definition)

@ In special relativity, spacetime is described by the Minkowski metric:
g = diag(1,-1,—-1,-1).

@ This defines the invariant spacetime interval:

2 2

32:guya:“x”:t — % —y? =22

@ Using the metric, we can lower indices:
Ty = gux’.
@ For the spacetime coordinate:
et =tz y, 2) — w,=(t, —x, —y, —2).

@ The key: the time component keeps its sign, while spatial
components change sign.
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Spacetime Four-Vectors & Minkowski Metric

Four-Momentum and Invariant Mass

@ Define the contravariant four-momentum:
" = (E, pz, Py, P2)-
@ Lowering the index with the Minkowski metric:
pu = guwp” = (E, —pz, —Dy, —P2).
@ Lorentz-invariant scalar = rest mass squared
pup" = gupt'p’ = E* — p* =m?.
@ Thus, the relativistic energy—momentum relation:

E® = 5% +m?.
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Spacetime Four-Vectors & Minkowski Metric

Covariant and Contravariant Derivatives

@ Define the derivative operator:
0
oxh’

o o0 0 0
au = a:’ 9.0 a9 o |-
ot dx’ Oy 0z
o Raising the index with the Minkowski metric
g = diag(1,—-1,—-1,—1):

O

o Explicitly:

o o a9 9
w_ vy (2 _ 2 _Z _
F =970 <8t’ az’ oy’ az)'

e The d’Alembertian operator (wave operator) is defined as

— g 2

= nw_ -

D_@8—éﬁ V2.
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Lorentz Transformations

4. Lorentz Transformations
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Lorentz Transformations

Definition of Lorentz Transformations

@ A Lorentz transformation is any linear map

/
ot — P = g A, ¥ = A*, 2Y
12

that preserves the Minkowski metric:
9poc = Guv A'up A5

@ Invariance of the interval:

8/2 = Gup .I/afl;‘/ﬁ

= G (A" 2t)(AP,2")
= (gagAaMAﬁy) ahrY = gata’ = 82
@ The Lorentz group therefore contains:

o Rotations in 3D space (leave ¢ unchanged).
o Boosts (mix t with a spatial direction).
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Lorentz Transformations

Example: Lorentz Boost in the z-Direction

@ Consider a boost along the z axis with velocity v.

@ Define
! 8
V= = .
v1—0v?
@ The Lorentz transformation matrix is
vy 0 0 —p
0 1 0 0
AP, =
v 0 01 0
-8 0 0 ~
@ Transformation of coordinates:
t/ = 7(75 - ﬁz)v
=z Y=y,
2 =~(z — Bt).
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Conserved Current and Charge

5. Conserved Current and Charge
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Conserved Current and Charge

Conservation Law

@ A conserved quantity is described by a continuity equation:
o+ V-j=o0.

@ In relativistic notation, we combine density and current into a
four-vector:

@) = (%3),  Ou*=0.
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Conserved Current and Charge

Conserved Charge

@ Define the charge as the spatial integral of the time component:

Qv = [ @ ).

@ Take the time derivative:

d .
d—cf = [ &z 9,5°(t,x).
@ Using 9,5 = 0:
o’ = -V -j.
@ Thus, a0
_— = — 3 ]
7 /d zV-j.
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Conserved Current and Charge

Divergence Theorem and Conservation

@ Apply Gauss's (divergence) theorem:
/d?’:cv-j: ds -j.
ov

o If the current j vanishes sufficiently fast at spatial infinity:

j{ds-j:o.

dQ
— =0.
dt

= The charge @ is a conserved quantity.

@ Therefore:
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Conserved Current and Charge

Probability Current in Quantum Mechanics

@ Start from the Schrodinger equation:

i%if - (—VQ + V(x)> "

@ Define probability density:
p(t,x) = [(t, x)[*.
@ Derive the continuity equation:

Ip .
E‘FV'J—O.

= Probability current:
. 1 * *
j=5 =WV - vy,
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Conserved Current and Charge

Interpretation: Probability Conservation

@ The conserved “charge” in quantum mechanics is the total

probability:
Q= [@opn = [ s lup

@ Conservation law:
dQ
— =0.
dt
@ Physical meaning:
e Probability never disappears or appears spontaneously.
e A particle is always found somewhere in space.

@ This is the non-relativistic counterpart of current conservation.
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From Energy—Momentum to the Schrodinger Equation

2
6. From E = ;—m +V
to the Schrodinger equation
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From Energy—Momentum to the Schrodinger Equation

Four-Momentum as an Operator

@ In quantum theory, promote the four-momentum to a differential

operator:
p* = (E,p) =i0"

e With the Minkowski metric g** = diag(1,—1,—1,—1):
0 0
au pu— = 7, _v .
Ox,, (5‘15 >

p* = (i9, —iV).

@ Therefore:

o Components:

p’ =i0; (energy operator), p = —iV (momentum operator).
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From Energy—Momentum to the Schrodinger Equation

Schrodinger Equation from E = % +V

@ Start from the non-relativistic energy relation:

2
.
E = 57 + V(x).

@ Substitute the operators:

E — 0, p — —iV.

Acting on a wavefunction (¢, x):

2

i1 0pp(t,x) = <—V + V(x)> p(t, x).

2m

This is the time-dependent Schrédinger equation.
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Klein—Gordon Equation

7. Klein—Gordon Equation
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Klein—Gordon Equation

Motivation: Relativistic Wave Equation

@ Start from the relativistic energy—momentum relation:
E? =p*+m”.

@ Historically, the Klein—-Gordon (KG) equation was proposed
independently in 1926 by Oskar Klein and Walter Gordon as the
relativistic analogue of the Schrodinger equation.

@ Goal: promote F and p to operators and derive a Lorentz-invariant
wave equation for a scalar field ¢(x).
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Klein—Gordon Equation

Derivation from E? = p? + m?

@ Use the four-momentum operator p* = i 9*, with

g = diag(1,—-1,-1,—1) = 0" = (0, —V).

E —i0, p— —iV.

@ Act on a scalar field ¢(¢,x):
(i0,)%¢ = [(=iV)*+m?|¢ = -7 = (— V> +m?)¢.

@ Rearranging:

(02 =V +m?) ¢(t,x) =0=| (9,0" +m?) ¢=0
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Klein—Gordon Equation

Covariant Form and Solutions

Let's interpret the KG equation

(0,0" +m?) =0
@ Plane-wave ansatz ¢(x) = e~"P% with

p v =purt =FEt—p-x
@ The KG equation gives
2

(—pup“+m2)¢:0 = ppt=m" = E? = p? +m?2.

OOPS! Solutions come with E = ++/p? + m?. (Negative-frequency
solutions are physical; in QFT they correspond to antiparticles.)
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Klein—Gordon Current

8. Klein—Gordon Current and
Continuity Equation
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Klein—Gordon Current

Step 1: Klein—Gordon Equation and Its Conjugate

o Klein—Gordon equation for a (complex) scalar field:
(80" +m?) §(x) = 0.
@ Its complex conjugate:
(0,0" +m?) ¢*(x) = 0.
@ Multiply the first by ¢* and the second by ¢:
¢* 0,0 p +mPp*p =0, ¢ 0,0V " +m*pp* = 0.
@ Subtract:

¢* 00" — $9,0"¢* = 0 (m? terms cancel).
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Klein—Gordon Current

Step 2: Turn It Into a Divergence

@ Product rule identity:
(90" ¢ — ¢0"9") = ¢" 00" — ¢0,0"".

@ We get the continuity equation:

auj'u =0, jﬂ = l(¢*8#¢ - ¢8N¢*) -

e Components (with g, = diag(1, —1,—1,—1) so O" = (0, —V)):

30 =i(¢* 0 — ¢00"),  j=—i(¢"Ve— pVe").
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Klein—Gordon Current

Step 3: Conserved Charge

o Define the charge (time component integrated over space):

Q) = /d?’x 70(t, x).
@ Since J,,5* = 0, we have

d
CT? =0 = ( is conserved.

e j%(t,x) is the probability density?
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Klein—Gordon Current

KG Current: j° is not positive definite

@ Take a plane-wave solution:
plz) = Ae FHiPX B 4.\ /p2 4 m2.
o With 0;¢p = —iE¢, V¢ = ip¢ and j* = i(¢p*0H p — ¢ OF9*),
7' =i(¢* 0 — ¢ O9*) = 2E | AP,

j=—i(¢"Ve -6 Ve*) = 2p AP

@ Since E has both signs in relativistic theory, j¥ = 2E|A|? can be
negative = j¥ is not a probability density.
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Klein—Gordon Current

Why ;% is not positive: second order in time

e Schrodinger (first order in time):
i0pp =HY = P +V-j=0, ps=y>0.
e Klein—Gordon (second order in time):
(0 = V24 m?) ¢ =0 = 0,5 =0, j°=i(¢"00 — 03" 9).
@ Because KG is second order, the conserved density necessarily involves
Oy, so it is not |¢|? and need not be positive.
@ Hence the non-positivity of j¥ is a structural consequence of the

second-order time evolution, independent of any particular solution.
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Klein—Gordon Current

Interpretation & Nonrelativistic Limit

o Interpretation:
e For a complex scalar, j* is the conserved U(1) charge current.
o For a real scalar (¢ = ¢*), 7 = 0 (no global phase symmetry).

e NR limit (recover Schrodinger):

efimt 1
)= — U(t,x) = j'=~|U)? j~ —Im(¥*VT).
o(x) NoT) (t,x) J o~ |V i~ ( )

@ Thus, in the nonrelativistic regime the KG current reduces to the
familiar probability density and current.
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Dirac: Motivation & Linearization

9. Dirac: Motivation &
Linearization
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Dirac: Motivation & Linearization

Historical Prelude (1926-1933)

@ 1926: Klein & Gordon propose the first relativistic wave eq. for a
scalar. Good Lorentz covariance, but j° not positive.

e Dirac’s aim (1928): Find a first-order in time & first-order in space
relativistic equation with a positive density
= linearize E? = p? + m?.

o Negative energies: Dirac’s hole theory (~1930)
= prediction of antiparticles.

@ 1932: Anderson discovers the positron, confirming Dirac's picture.

o Modern view: Negative-frequency solutions = antiparticles in QFT
(no hole sea needed).

Refs: P. A. M. Dirac, Proc. R. Soc. A 117 (1928) 610; Dirac, Proc. R. Soc. A 126
(1930) 360; C. D. Anderson, Science 76 (1932) 238.
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Dirac: Motivation & Linearization

Motivation: First Order in Time

@ The Klein—Gordon (KG) equation is second order in time:
(0152 _v2+m2)¢207

whose conserved density jO is not positive definite.

@ Goal: Find a relativistic wave equation that is first order in time
derivative, so we can have a positive-definite density and a
probability interpretation, like Schrodinger's theory.

o Strategy: Linearize the relativistic energy:
E*=p?+m? = E=a-p+pBm,

with suitable matrices a, 5.
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Dirac: Motivation & Linearization

Linearization Ansatz: £ = o - p + Sm

@ Postulate a Hamiltonian linear in p:
H=qap+ Bm, a=(at,a? a?).
@ Require that squaring reproduces the dispersion:

H?=(a-p+pm)?=p>+m?1.
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Dirac: Motivation & Linearization

Squaring the Linear Hamiltonian: Expansion

@ Start with ‘
H:azpi‘Fﬁm (1217273%

and expand:
H? = (a'pi)(a’pj) + a'p; Bm + Bmalp; + BZm?.
@ Since
(a'pi)(e?p;) = o'l pip;,  a'p; Bm + Bmalp; = mpi(a’B + Ba’),
we have
H? = o'a pip; +mpi(a’B + Ba’) +B2m?>.
—_— —

quadratic in p linear in p
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Dirac: Motivation & Linearization

Why the linear term must vanish (and the mass term)

e To match H? = p2 + m?21, there must be no term linear in i

mp;(a'B+Ba’) = 0 forall p

= {a!,B} =0, for each i

where the anti-commutator is {A, B} = AB + BA.

@ The mass term must equal m?1:

BmP=m?1 = | B2=1
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Dirac: Motivation & Linearization

For the p? piece: using commutator & anticommutator

@ Quadratic part:
(a-p)2 = a'ad DiD;-

@ Decompose a product of matrices into symmetric/antisymmetric

parts:

a'ad = Ha' ol} + o', o).

e Since p;p; = p;p; is symmetric in (7, ), the antisymmetric part

drops:

a'ed pipj = 3{a’, 0’} pip;.

e To reproduce p?1 = §p;p; 1 for all p:

%{ai,aj}zéijl — | {al,af} =261
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Dirac: Motivation & Linearization

Sufficiency: Algebra =- Dispersion

e Assume {a‘,af} = 2591, {a!,B} =0, B> =1.

e The quadratic term becomes

(ap)? = a'a? pip; = 2{a’, o’} pipj = §“pip; 1 = p* 1.

o The cross term vanishes:
a'p; Bm + Bm ajpj = mpi{ai, B} =0.

o And the mass term: $?°m? = m?1.

@ Therefore

H?>=(a-p+pm)?=p*+m?1
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Dirac Matrices & Representations

10. Dirac Matrices &

Representations
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Dirac Matrices & Representations

Why 4 x 4 Matrices?

@ We need four independent, mutually anticommuting Hermitian
matrices: al,a?, a3, 8, with (af)? = 82 = 1.

@ 2 x 2 Pauli matrices provide at most three anticommuting matrices.

@ Hence the minimal representation is 4 x 4

@ Dirac spinors have four components.
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Dirac Matrices & Representations

Explicit Matrices (Dirac / Standard Representation)

@ Choose

1, 0 , 0 o
_ : i— " i =1,2,3).

o Quick checks (using o’c/ = 6715 + ieFok):

(a')? = (J 7 ) =1y, B =14,

0 oot

alad +alal = {o", o7} ,O ] =26Y1y,
0 {o",07}

. . 0 ot 0 —o
7 i ' . = 0.
o'+ fo (—01 O>+(U’ 0 )
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Dirac Matrices & Representations
From Hamiltonian to Covariant Dirac Equation
e Covariant notation (from the Hamiltonian form):
V=8, A=pa = o =79" g=7"

e Start with the Hamiltonian form

i@w::(—iwv+ﬁn0w
o Multiply on the left by v° = 8 and use o = 794"

V(i) = (= i1 a0+ Bm ) = (= 70, +m)y.

@ Bring all terms to the left:

(i7°0 +iv'0; —m)yp =0 = |(i7"9, —m)y(z)=0|
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Dirac Matrices & Representations

Dirac Matrices: Representations & Equivalence

e Covariant notation (from the Hamiltonian form):
0_ i—pi
Y =B A =pal
o Clifford algebra (metric g*” = diag(1, —1,—1,—1)):
{72 =24"1.

e Not unique: any set {7y*} obeying the Clifford algebra is a valid
representation.
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Dirac Matrices & Representations

Two Common Representations (Examples)

e Dirac (standard) representation

1 0 , 0 o 0 1
0 _ i_ ' 5= 01,23 _ .
ol —(0 _1>, v (-ﬁ o)’ Y=y Y (1 0>

(Here ~° is off-diagonal.)

e Chiral (Weyl) representation

0 1 A 0 o -1 0
0 __ T ) 5 — )

(Here ~° is diagonal.)
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Spin & Lorentz Transformations

11. Spin & Lorentz
Transformations of a Dirac spinor
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Spin & Lorentz Transformations

Dirac Equation: Degrees of Freedom & Spin

o Relativistic wave equation with 4 x 4 matrices:

(179 —m) () = 0.

@ The energy and three-momentum must satisfy
F? =p?+m?

@ Four-component spinor v yields, at fixed p, four independent
solutions:
e two positive-energy solutions F = ++/p2 + m?2 with spin s = i%;
e two negative-energy solutions £ = —/p? + m2 with spin s = j:%.
@ Spin is automatic: the v contain Pauli matrices; rotations act via
a0

Ei:% . = s=4=4
0 o

D=
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Spin & Lorentz Transformations

How Spinors Change under Lorentz Transformations

@ Under a Lorentz transformation (a rotation or a boost), the spinor
changes by a 4 x 4 matrix:

b — v =S(h) v

(think: a matrix that mixes the 4 components of v.)

@ Finite transformation generated by ¥#*" = %[fy“,fy”]:

S(A) = exp <—;ww Z“") , Wy = —Wyy

which leads to

rotations: J' = 3 LD YL boosts: K' = X%,
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Spin & Lorentz Transformations

Explicit ¥ in the Dirac Representation

@ The spin operator is the rotation generator J*.

@ Using the v matrices in the Dirac representation:

o (1 0 . (0 o
Y= 0 -1 ) Y= —O'i 07

. k
R o o 0
YU = Z[~0 Ad] = Tk _

@ Therefore the rotation generators are

one finds

0 o

) 1 (o 0 . 1
J' = 3 ( ) = eigenvalues s = &3.

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025

54 /79



Spin & Lorentz Transformations

The Triumph of Dirac: Spin (vs. Schrodinger)

e Schrodinger (spinless):
2
100 = <—V + V) P,
2m

where ¢ is a scalar. Spin is not built in.

e To include spin in NR QM, we add it by hand: ¢ — ¥ = (:ZZT)
1

e Dirac (spin built in):
(i9"0, —m) Y =0, 1 : four-component spinor.
As shown earlier, the rotation generators J¢ for the Dirac spinor have

eigenvalues i%. Intrinsic spin-% appears automatically.

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025 55/79



Spin & Lorentz Transformations

Boost vs. Rotation Generators: Hermiticity & Unitarity

o Rotation generators Ji = 1ei/Fyik:

1 (c" 0 ; ;
Jgi—-[° ' = (JHT=J" (Hermitian).
2\0 o

e Boost generators K = X0

, 0 i , A
Kzzi(. a) = (K% =—K" (anti-Hermitian).

ot 0
e Finite Lorentz transformations on spinors, S(A) = e~ W B

o Pure rotation (w;; = 0;;): Hermitian generator = S unitary.
o Pure boost (wy; = p; rapidity): anti-Hermitian generator = S is not
unitary (Lorentz group is non-compact).
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Dirac Adjoint, Bilinears & Current

12. Dirac Adjoint & Conserved
Current
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Dirac Adjoint, Bilinears & Current

Lorentz—covariant density via the Dirac adjoint 1

YT is not Lorentz invariant. Why?

(]

Under a Lorentz transformation A, a Dirac spinor changes

b — Y = S(A) Y.

@ Then
Wy = ptSTS ey equals ¥y only if STS = 1.

For pure rotations, S is unitary (STS = 1).
For boosts, S is not unitary, so /Ty’ # i1,
What can we do?
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Dirac Adjoint, Bilinears & Current

Spinor Boost Along z from the Explicit Generator

@ In the Dirac representation,

0 o3

K3;203:¢< 3
o’ 0

) =iM, (M)' = M (Hermitian).

@ A boost of rapidity n along +z acts as ' = S.(n) ¥,

S.(n) = exp(% M) = coshg 1+ M sinhg.

e Since M is Hermitian, Si(n) = S.(n) and

S1S, = exp(nM) # 1 for n # 0
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Dirac Adjoint, Bilinears & Current

If S1 £ ST, what is S—1?

. 0 o3
@ For a z—boost with M = (03 0) and S.(n) = exp(3M):

10814° = 108.9" = exp(37°M~°) = exp( — $M) = 57,

since YYMAY = — M.

@ This relation holds true in general:

S—l — ,YOSJ[,YO )

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025 60/79



Dirac Adjoint, Bilinears & Current

Dirac adjoint and covariant bilinears

e Define the Dirac adjoint: ) = 1)T~°.
e Using S~1 = ~%ST70 we can show that

P = oty
= ¢T707°57 5y
= SISy = Y.

@ Define a proper Lorentz 4-vector current:

=ty
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Dirac Adjoint, Bilinears & Current

Current Conservation from the Dirac Equation

@ Dirac equation and its adjoint:

(iv"8, —m)y = 0, Ot iy* + map = 0.

Compute the divergence of j* = i)y a):
auju = (8M1E)'YH¢ + 7;'7#(8#1/’)-
Use the two equations:

(8#&)7“ =—imaq, Yo = imap.

Hence the continuity equation holds true:

Oy = (—imD) + G(im ) = 0.

o ldentify the probability density and current:
30 = y%% = Ty > 0, unlike Klein—Gordon
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Negative Energies & Positron

13. Negative Energies & the
Positron
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Negative Energies & Positron

Dirac Plane Waves: Positive & Negative Energy

@ Seek plane-wave solutions of (iy*d, —m)y = 0:
b(a) = us(p) e or Y(x) =vy(p) et poa=puat

o Withp? = FE = \/p2+m?2 >0,
(v'pu —m)us(p) =0 (“positive-energy” branch),

(Y*pu + m)vs(p) =0 (“negative-energy” branch).

o Key point: despite the negative-energy eigenvalue, the density is
always positive:

i’ =yl >0

The issue is stability: in a one-particle picture, why not fall into
ever-lower (negative) energies?
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Negative Energies & Positron

If negative-energy states exist, why doesn’t an electron
radiate down to £ < 07

Problem: vacuum instability
if E <O states are empty

E A
electron @
radiation
E=0 >~ emission
E<0
negative-energy
E<0 continuum

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025 65 /79



Negative Energies & Positron

Dirac’s Idea: the “Sea” of Negative-Energy Electrons

e Dirac’s proposal (historical):
@ All negative-energy electron states are filled in the vacuum (Pauli
exclusion blocks further decays).
@ Removing one electron from the sea leaves a hole: it behaves like a

particle with charge +e and energy +F (later identified as the
positron).

electron

-
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Negative Energies & Positron

Modern View (QFT): Antiparticles without a Literal Sea

@ Promote v to a field operator; expand in modes:
d3p 1 . ,
= bs s TP di s T
vie) =3 s o @) use)e (p) vi(p) €

o Interpretation: bl creates an electron; dl creates an antiparticle
(positron). Negative-frequency modes are reinterpreted as creation of
antiparticles, not negative-energy electrons.

@ Charge and density:
Q= / Prj® o > [blbs — dldy].
p,s

o Bottom line: QFT keeps j° = 4Ty > 0, preserves Lorentz
covariance, and explains antiparticles without an infinitely filled
sea—just creation/annihilation operators and a stable vacuum.
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Anderson (1932): Cloud Chamber Setup & Strategy

e Apparatus: vertical expansion (Wilson) cloud chamber in a strong
magnetic field B

@ Cosmic rays provide charged particles.

@ A lead plate is mounted midway through the chamber (~6 mm
thick). (Energy loss in Pb makes tracks curve more after crossing the lead plate.)

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025 68 /79



Negative Energies & Positron

Why the Lead Plate? Direction from Curvature Change

@ In a uniform B field, track radius 7 is set by momentum:
r=2_
lq|B

@ Crossing the lead plate = energy loss (AE < 0) and thus momentum
loss (Ap < 0).

Pafter < Pbefore = Tafter < Tbefore-

Read the direction: the track goes from the larger-radius arc (before
plate) to the smaller-radius arc (after plate).

Then read the sign: with the known B direction, the sense of
bending gives sign(q).
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Negative Energies & Positron

Evidence from the Track: Light, Positively Charged

e Famous photograph: track curves more above the plate (lower
momentum), and bends in the direction for positive charge.
(Upward-going, left-curving in the published image.)

Mass inference: Proton?

e Range/energy loss in Pb and gas: protons with the same curvature
would stop within mm, but the observed tracks are cm-scale.

Conclusion: a light (= m,) particle with positive charge.

It is a positron.
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Helicity and Chirality

14. Helicity and Chirality
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Helicity and Chirality

Helicity

@ Helicity: projection of spin on momentum direction

—

A o O)
h=""L $_ 0
171 (0 g
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Helicity and Chirality

From Dirac to Weyl: Setup (Chiral Rep.)
@ Start from the momentum-space Dirac equation:

(p—m)up) =0,  p="pu

e Chiral (Weyl) representation:

o (0 1 i (0 o 5 (-1 0
T o0) T\t o) 7T T o 1

@ Spinor decomposition and Pauli 4-vectors:

u(p) = (i}i) ot = (1,5), &= (1,-5).

e With metric diag(+, —, —, —) and p, = (E, —p):
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Helicity and Chirality

Block Form of p and (p —m)

@ Using the chiral +*:

0 p-o
— B
p=rr= (.0 ")

p-m= ().

e Acting on u(p) = (%)

@ Therefore,

(o ) (G) = (o) = (6).

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025

74/79



Helicity and Chirality

Extracting the Two Weyl Equations

@ From upper two components:

(p-o)Yr=mL.

@ From lower two components:

(p-0)Yr =mig.

@ Massless limit (m = 0) decouples the chiralities:

(p‘U)wRZO, (p5)¢L:0a

i.e. two independent Weyl equations.
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Helicity and Chirality

From Weyl Equations to Helicity Eigenstates

Massless Weyl equations:

(p-o)yr =0, (p-a)¢r =0.
For 5= |p|p, E = |pl:

(E1—p-0)Yyr=0 = (¢

(B1+7-8)¢r =0 = (- p)Yr = —r.

Thus, ¥ and ¥y, are helicity eigenstates with eigenvalues +1 and —1
Interpreting /2 as spin for spin—%:

PR = +r,

Yr: h=-+3 (spin parallel to ), ¥ : h = —1 (spin anti-parallel)
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Helicity and Chirality

Chirality: Massless vs Massive Fermions

@ Massless case (m = 0): chiralities decouple
puotYr =0,  puotir =0,
so chirality is conserved and
chirality = helicity.
e Massive case (m # 0): the mass term couples chiralities
puctyr = miy, puctr = muypg,

so chirality is not conserved.
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Helicity and Chirality

Left-handed Neutrinos in the Standard Model

@ Experiment: weak interactions violate parity maximally.

o Wu experiment (1957): beta decay asymmetry.
o Goldhaber experiment (1958): neutrinos are left-helical.

@ Theory: weak force is an SU(2), gauge interaction.

L£:<€Vf> y 6267/1’77—
L

Only left-chiral doublets couple to W, Z bosons.
@ No right-handed neutrino field exists in the minimal SM.

@ = In the SM: only left-handed neutrinos exist.
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Helicity and Chirality

Summary: Why Chirality Matters

@ Helicity: intuitive picture — spin along momentum.

@ Chirality: fundamental in the Standard Model.
o Electroweak gauge structure:
o Left-chiral fermions form SU(2)., doublets:

(i), e (i),

o Right-chiral fermions are SU(2), singlets:
er, URr, dg (no vg in SM)

@ This chiral asymmetry explains:

o Maximal parity violation in weak interactions.
o Different coupling strengths of left- vs. right-handed fields.
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