Relativistic Quantum Mechanics KIAS Particle Physics Summer Camp 2025

Jeonghyeon Song

Konkuk University

August 25 & 26, 2025

Outline

- Introduction
- Natural Units
- Spacetime Four-Vectors & Minkowski Metric
- 4 Lorentz Transformations
- Conserved Current and Charge
- 6 From Energy–Momentum to the Schrödinger Equation
- Klein-Gordon Equation
- Klein-Gordon Current
- Oirac: Motivation & Linearization
- Dirac Matrices & Representations
- Spin & Lorentz Transformations
- Dirac Adjoint, Bilinears & Current
- Negative Energies & Positron
- Helicity and Chirality

1. Introduction

Why Relativistic Quantum Mechanics?

- Non-relativistic quantum mechanics does not respect special relativity.
- The Schrödinger equation is built from the non-relativistic energy relation:

$$E = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}).$$

- To describe high-energy particles, we need a framework that combines:
 - Quantum mechanics
 - 2 Lorentz invariance
- This naturally points toward **quantum field theory**, but the first step is to study **relativistic single-particle equations**.

2. Natural Units

Definition

• Natural units set fundamental constants to 1:

$$\hbar = 1,$$
 $c = 1$ (often also $k_B = 1$).

- Consequences:
 - ullet Energy, momentum, and mass share the same unit (GeV is standard).
 - Length and time carry inverse energy units:

$$[t] = [\ell] = \frac{1}{\mathsf{mass}}$$

• Derivatives carry energy dimension:

$$[\partial_{\mu}]=\mathsf{mass}$$

Quick Conversions and Heuristics

Useful constants:

$$\hbar c \approx 0.1973269804 \text{ GeV fm}.$$

Core conversions:

$$1 \text{ GeV}^{-1} \approx 0.1973 \text{ fm} \approx 6.582 \times 10^{-25} \text{ s.}$$

• Cross sections:

$$[\sigma] = \text{mass}^{-2} \Rightarrow 1 \text{ GeV}^{-2} \approx 0.3894 \text{ mb.}$$

Action is Dimensionless

In the path integral,

$$\mathcal{Z} = \int \mathcal{D}\phi \, \exp \left\{ \frac{i}{\hbar} S[\phi] \right\}.$$

• The exponent must be dimensionless. Therefore,

$$[S] = [\hbar].$$

• In natural units $\hbar = 1$, hence S is **dimensionless**.

3. Spacetime Four-Vectors & Minkowski Metric

Spacetime Coordinates

In relativity, space and time combine into a single contravariant four-vector:

$$x^{\mu} = (t, \mathbf{x}) = (t, x, y, z).$$

- We use natural units with c=1.
- Index convention:

$$\mu = 0, 1, 2, 3 \implies x^0 = t, \ x^1 = x, \ x^2 = y, \ x^3 = z.$$

- Contravariant vector = components with an *upper* index (μ) .
- Later, covariant vectors will be written with a lower index (μ) .

Minkowski Metric (Definition)

In special relativity, spacetime is described by the Minkowski metric:

$$g_{\mu\nu} = \mathsf{diag}(1, -1, -1, -1).$$

This defines the invariant spacetime interval:

$$s^2 = g_{\mu\nu}x^{\mu}x^{\nu} = t^2 - x^2 - y^2 - z^2.$$

• Using the metric, we can lower indices:

$$x_{\mu} = g_{\mu\nu}x^{\nu}.$$

For the spacetime coordinate:

$$x^{\mu} = (t, x, y, z) \longrightarrow x_{\mu} = (t, -x, -y, -z).$$

 The key: the time component keeps its sign, while spatial components change sign.

Four-Momentum and Invariant Mass

• Define the **contravariant four-momentum**:

$$p^{\mu} = (E, p_x, p_y, p_z).$$

Lowering the index with the Minkowski metric:

$$p_{\mu} = g_{\mu\nu}p^{\nu} = (E, -p_x, -p_y, -p_z).$$

Lorentz-invariant scalar ⇒ rest mass squared

$$p_{\mu}p^{\mu} = g_{\mu\nu}p^{\mu}p^{\nu} = E^2 - \vec{p}^2 = m^2.$$

Thus, the relativistic energy–momentum relation:

$$E^2 = \vec{p}^2 + m^2.$$

Covariant and Contravariant Derivatives

Define the derivative operator:

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}.$$

Explicitly:

$$\partial_{\mu} = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right).$$

• Raising the index with the Minkowski metric $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$:

$$\partial^{\mu} = g^{\mu\nu} \, \partial_{\nu} = \left(\frac{\partial}{\partial t}, \, -\frac{\partial}{\partial x}, \, -\frac{\partial}{\partial y}, \, -\frac{\partial}{\partial z} \right).$$

The d'Alembertian operator (wave operator) is defined as

$$\Box \equiv \partial_{\mu} \partial^{\mu} = \frac{\partial^2}{\partial t^2} - \nabla^2.$$

4. Lorentz Transformations

Definition of Lorentz Transformations

A Lorentz transformation is any linear map

$$x^{\mu} \ \longrightarrow \ x'^{\mu} = \sum_{\nu} \Lambda^{\mu}{}_{\nu} \, x^{\nu} = \Lambda^{\mu}{}_{\nu} \, x^{\nu}$$

that preserves the Minkowski metric:

$$g_{\rho\sigma} = g_{\mu\nu} \, \Lambda^{\mu}{}_{\rho} \, \Lambda^{\nu}{}_{\sigma}.$$

• Invariance of the interval:

$$\begin{split} s'^2 &\equiv g_{\alpha\beta} \, x'^{\alpha} x'^{\beta} \\ &= g_{\alpha\beta} \, (\Lambda^{\alpha}{}_{\mu} x^{\mu}) (\Lambda^{\beta}{}_{\nu} x^{\nu}) \\ &= (g_{\alpha\beta} \Lambda^{\alpha}{}_{\mu} \Lambda^{\beta}{}_{\nu}) \, x^{\mu} x^{\nu} = g_{\mu\nu} x^{\mu} x^{\nu} = s^2. \end{split}$$

- The Lorentz group therefore contains:
 - **Rotations** in 3D space (leave t unchanged).
 - **Boosts** (mix t with a spatial direction).

15 / 79

Example: Lorentz Boost in the *z*-Direction

- Consider a boost along the z axis with velocity v.
- Define

$$\gamma = \frac{1}{\sqrt{1 - v^2}}, \qquad \beta = v.$$

The Lorentz transformation matrix is

$$\Lambda^{\mu}{}_{\nu} = \begin{pmatrix} \gamma & 0 & 0 & -\gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma\beta & 0 & 0 & \gamma \end{pmatrix}.$$

Transformation of coordinates:

$$t' = \gamma(t - \beta z),$$

$$x' = x, \quad y' = y,$$

$$z' = \gamma(z - \beta t).$$

5. Conserved Current and Charge

Conservation Law

A conserved quantity is described by a continuity equation:

$$\partial_t j^0 + \nabla \cdot \mathbf{j} = 0.$$

 In relativistic notation, we combine density and current into a four-vector:

$$j^{\mu}(x) = (j^0, \mathbf{j}), \qquad \partial_{\mu} j^{\mu} = 0.$$

Conserved Charge

Define the charge as the spatial integral of the time component:

$$Q(t) = \int d^3x \ j^0(t, \mathbf{x}).$$

Take the time derivative:

$$\frac{dQ}{dt} = \int d^3x \ \partial_t j^0(t, \mathbf{x}).$$

• Using $\partial_{\mu}j^{\mu}=0$:

$$\partial_t j^0 = -\nabla \cdot \mathbf{j}.$$

Thus,

$$\frac{dQ}{dt} = -\int d^3x \; \nabla \cdot \mathbf{j}.$$

Divergence Theorem and Conservation

Apply Gauss's (divergence) theorem:

$$\int d^3x \; \nabla \cdot \mathbf{j} = \oint_{\partial V} d\mathbf{S} \cdot \mathbf{j}.$$

• If the current **j** vanishes sufficiently fast at spatial infinity:

$$\oint_{\infty} d\mathbf{S} \cdot \mathbf{j} = 0.$$

• Therefore:

$$\frac{dQ}{dt} = 0.$$

 \Rightarrow The charge Q is a conserved quantity.

Probability Current in Quantum Mechanics

Start from the Schrödinger equation:

$$i\frac{\partial \psi}{\partial t} = \left(-\frac{\nabla^2}{2m} + V(\mathbf{x})\right)\psi.$$

Define probability density:

$$\rho(t, \mathbf{x}) = |\psi(t, \mathbf{x})|^2.$$

Derive the continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0.$$

⇒ Probability current:

$$\mathbf{j} = \frac{1}{2mi} (\psi^* \nabla \psi - \psi \nabla \psi^*).$$

Interpretation: Probability Conservation

 The conserved "charge" in quantum mechanics is the total probability:

$$Q = \int d^3x \ \rho(t, \mathbf{x}) = \int d^3x \ |\psi|^2.$$

Conservation law:

$$\frac{dQ}{dt} = 0.$$

- Physical meaning:
 - Probability never disappears or appears spontaneously.
 - A particle is always found somewhere in space.
- This is the non-relativistic counterpart of current conservation.

6. From $E = \frac{\mathbf{p}^2}{2m} + V$ to the Schrödinger equation

Four-Momentum as an Operator

 In quantum theory, promote the four-momentum to a differential operator:

$$p^{\mu} = (E, \mathbf{p}) = i \, \partial^{\mu}.$$

• With the Minkowski metric $g^{\mu\nu} = \operatorname{diag}(1, -1, -1, -1)$:

$$\partial^{\mu} = \frac{\partial}{\partial x_{\mu}} = \left(\frac{\partial}{\partial t}, -\nabla\right).$$

• Therefore:

$$p^{\mu} = (i \, \partial_t, \, -i \nabla).$$

Components:

$$p^0=i\,\partial_t\quad ({\rm energy\ operator}), \qquad {\bf p}=-i\nabla\quad ({\rm momentum\ operator}).$$

Schrödinger Equation from $E = \frac{\mathbf{p}^2}{2m} + V$

Start from the non-relativistic energy relation:

$$E = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}).$$

Substitute the operators:

$$E \to i \, \partial_t, \qquad \mathbf{p} \to -i \nabla.$$

• Acting on a wavefunction $\psi(t, \mathbf{x})$:

$$i \partial_t \psi(t, \mathbf{x}) = \left(-\frac{\nabla^2}{2m} + V(\mathbf{x})\right) \psi(t, \mathbf{x}).$$

This is the time-dependent Schrödinger equation.

7. Klein-Gordon Equation

Motivation: Relativistic Wave Equation

• Start from the **relativistic energy–momentum relation**:

$$E^2 = \mathbf{p}^2 + m^2.$$

- Historically, the Klein–Gordon (KG) equation was proposed independently in 1926 by Oskar Klein and Walter Gordon as the relativistic analogue of the Schrödinger equation.
- Goal: promote E and ${\bf p}$ to operators and derive a Lorentz-invariant wave equation for a scalar field $\phi(x)$.

Derivation from $E^2 = \mathbf{p}^2 + m^2$

• Use the four-momentum operator $p^{\mu}=i\,\partial^{\mu}$, with

$$g^{\mu\nu} = \operatorname{diag}(1, -1, -1, -1) \Rightarrow \partial^{\mu} = (\partial_t, -\nabla).$$

 \Rightarrow

$$E \to i\partial_t$$
, $\mathbf{p} \to -i\nabla$.

• Act on a scalar field $\phi(t, \mathbf{x})$:

$$(i\partial_t)^2 \phi = [(-i\nabla)^2 + m^2] \phi \implies -\partial_t^2 \phi = (-\nabla^2 + m^2) \phi.$$

Rearranging:

$$\left(\partial_t^2 - \nabla^2 + m^2\right)\phi(t, \mathbf{x}) = 0 \Rightarrow \left(\partial_\mu \partial^\mu + m^2\right)\phi = 0$$

Covariant Form and Solutions

Let's interpret the KG equation

$$(\partial_{\mu}\partial^{\mu} + m^2)\,\phi = 0$$

• Plane-wave ansatz $\phi(x) = e^{-ip\cdot x}$ with

$$p \cdot x = p_{\mu} x^{\mu} = Et - \mathbf{p} \cdot \mathbf{x}$$

The KG equation gives

$$(-p_{\mu}p^{\mu} + m^2) \phi = 0 \implies p_{\mu}p^{\mu} = m^2 \implies E^2 = \mathbf{p}^2 + m^2.$$

• OOPS! Solutions come with $E = \pm \sqrt{\mathbf{p}^2 + m^2}$. (Negative-frequency solutions are physical; in QFT they correspond to antiparticles.)

8. Klein-Gordon Current and Continuity Equation

Step 1: Klein-Gordon Equation and Its Conjugate

Klein–Gordon equation for a (complex) scalar field:

$$(\partial_{\mu}\partial^{\mu} + m^2) \phi(x) = 0.$$

Its complex conjugate:

$$(\partial_{\mu}\partial^{\mu} + m^2) \,\phi^*(x) = 0.$$

• Multiply the first by ϕ^* and the second by ϕ :

$$\phi^* \partial_\mu \partial^\mu \phi + m^2 \phi^* \phi = 0, \qquad \phi \partial_\mu \partial^\mu \phi^* + m^2 \phi \phi^* = 0.$$

Subtract:

$$\phi^* \partial_\mu \partial^\mu \phi - \phi \partial_\mu \partial^\mu \phi^* = 0 \quad (m^2 \text{ terms cancel}).$$

Step 2: Turn It Into a Divergence

Product rule identity:

$$\partial_{\mu}(\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*) = \phi^* \,\partial_{\mu}\partial^{\mu}\phi \,-\, \phi \,\partial_{\mu}\partial^{\mu}\phi^*.$$

• We get the **continuity equation**:

$$\partial_{\mu}j^{\mu} = 0, \qquad j^{\mu} \equiv i(\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*).$$

• Components (with $g_{\mu\nu} = \operatorname{diag}(1, -1, -1, -1)$ so $\partial^{\mu} = (\partial_t, -\nabla)$):

$$j^0 = i(\phi^* \partial_t \phi - \phi \partial_t \phi^*), \quad \mathbf{j} = -i(\phi^* \nabla \phi - \phi \nabla \phi^*).$$

Step 3: Conserved Charge

• Define the charge (time component integrated over space):

$$Q(t) \equiv \int d^3x \ j^0(t, \mathbf{x}).$$

• Since $\partial_{\mu}j^{\mu}=0$, we have

$$\frac{dQ}{dt} = 0 \quad \Rightarrow \quad Q \text{ is conserved.}$$

• $j^0(t, \mathbf{x})$ is the probability density?

KG Current: j^0 is not positive definite

Take a plane-wave solution:

$$\phi(x) = A e^{-iEt + i\mathbf{p} \cdot \mathbf{x}}, \qquad E = \pm \sqrt{\mathbf{p}^2 + m^2}.$$

• With $\partial_t \phi = -iE\phi$, $\nabla \phi = i\mathbf{p}\phi$ and $j^\mu = i(\phi^*\partial^\mu\phi - \phi\,\partial^\mu\phi^*)$,

$$j^{0} = i(\phi^* \partial_t \phi - \phi \, \partial_t \phi^*) = 2E \, |A|^2,$$

$$\mathbf{j} = -i(\phi^* \nabla \phi - \phi \nabla \phi^*) = 2\mathbf{p} |A|^2.$$

• Since E has both signs in relativistic theory, $j^0=2E|A|^2$ can be negative $\Rightarrow j^0$ is not a probability density.

Why j^0 is not positive: second order in time

Schrödinger (first order in time):

$$i \partial_t \psi = H \psi \implies \partial_t |\psi|^2 + \nabla \cdot \mathbf{j} = 0, \quad \rho_S = |\psi|^2 \ge 0.$$

Klein–Gordon (second order in time):

$$(\partial_t^2 - \nabla^2 + m^2) \phi = 0 \Rightarrow \partial_\mu j^\mu = 0, \quad j^0 = i(\phi^* \partial_t \phi - \partial_t \phi^* \phi).$$

- Because KG is *second order*, the conserved density necessarily involves $\partial_t \phi$, so it is not $|\phi|^2$ and need not be positive.
- Hence the non-positivity of j^0 is a structural consequence of the second-order time evolution, *independent* of any particular solution.

Interpretation & Nonrelativistic Limit

- Interpretation:
 - For a complex scalar, j^{μ} is the conserved **U(1) charge current**.
 - For a real scalar ($\phi = \phi^*$), $j^{\mu} \equiv 0$ (no global phase symmetry).
- NR limit (recover Schrödinger):

$$\phi(x) = \frac{e^{-imt}}{\sqrt{2m}} \Psi(t, \mathbf{x}) \implies j^0 \approx |\Psi|^2, \qquad \mathbf{j} \approx \frac{1}{m} \operatorname{Im}(\Psi^* \nabla \Psi).$$

• Thus, in the nonrelativistic regime the KG current reduces to the familiar **probability density and current**.

9. Dirac: Motivation & Linearization

Historical Prelude (1926–1933)

- **1926:** Klein & Gordon propose the first relativistic wave eq. for a scalar. Good Lorentz covariance, but j^0 not positive.
- **Dirac's aim (1928):** Find a *first-order in time* & *first-order in space* relativistic equation with a positive density \Rightarrow linearize $E^2 = \mathbf{p}^2 + m^2$.
- Negative energies: Dirac's hole theory (~1930)
 ⇒ prediction of antiparticles.
- **1932:** Anderson discovers the *positron*, confirming Dirac's picture.
- Modern view: Negative-frequency solutions ⇒ antiparticles in QFT (no hole sea needed).

Refs: P. A. M. Dirac, Proc. R. Soc. A **117** (1928) 610; Dirac, Proc. R. Soc. A 126 (1930) 360; C. D. Anderson, Science **76** (1932) 238.

Motivation: First Order in Time

The Klein-Gordon (KG) equation is second order in time:

$$(\partial_t^2 - \nabla^2 + m^2) \phi = 0,$$

whose conserved density j^0 is *not* positive definite.

- Goal: Find a relativistic wave equation that is first order in time derivative, so we can have a positive-definite density and a probability interpretation, like Schrödinger's theory.
- **Strategy:** *Linearize* the relativistic energy:

$$E^2 = \mathbf{p}^2 + m^2 \Rightarrow E = \boldsymbol{\alpha} \cdot \mathbf{p} + \beta m,$$

with suitable matrices α, β .

Linearization Ansatz: $E = \alpha \cdot \mathbf{p} + \beta m$

Postulate a Hamiltonian linear in p:

$$H = \boldsymbol{\alpha} \cdot \mathbf{p} + \beta m, \qquad \boldsymbol{\alpha} = (\alpha^1, \alpha^2, \alpha^3).$$

Require that squaring reproduces the dispersion:

$$H^2 = (\alpha \cdot \mathbf{p} + \beta m)^2 = \mathbf{p}^2 + m^2 \mathbf{1}.$$

Squaring the Linear Hamiltonian: Expansion

Start with

$$H = \alpha^i p_i + \beta m \qquad (i = 1, 2, 3),$$

and expand:

$$H^{2} = (\alpha^{i} p_{i})(\alpha^{j} p_{j}) + \alpha^{i} p_{i} \beta m + \beta m \alpha^{j} p_{j} + \beta^{2} m^{2}.$$

Since

$$(\alpha^i p_i)(\alpha^j p_j) = \alpha^i \alpha^j p_i p_j, \quad \alpha^i p_i \, \beta m + \beta m \, \alpha^j p_j = m p_i (\alpha^i \beta + \beta \alpha^i),$$

we have

$$H^{2} = \underbrace{\alpha^{i} \alpha^{j} p_{i} p_{j}}_{\text{quadratic in p}} + \underbrace{m p_{i} (\alpha^{i} \beta + \beta \alpha^{i})}_{\text{linear in p}} + \beta^{2} m^{2}.$$

Why the linear term must vanish (and the mass term)

• To match $H^2 = \mathbf{p}^2 + m^2 \mathbf{1}$, there must be *no* term linear in p_i :

$$m \, p_i(\alpha^i \beta + \beta \alpha^i) = 0 \text{ for all } \mathbf{p}$$

$$\Longrightarrow \qquad \boxed{\{\alpha^i, \beta\} = 0, \text{ for each } i}$$

where the anti-commutator is $\{A, B\} = AB + BA$.

• The mass term must equal $m^2 \mathbf{1}$:

$$\beta^2 m^2 = m^2 \mathbf{1} \implies \boxed{\beta^2 = \mathbf{1}}.$$

For the p^2 piece: using commutator & anticommutator

Quadratic part:

$$(\boldsymbol{\alpha} \cdot \mathbf{p})^2 = \alpha^i \alpha^j \, p_i p_j.$$

 Decompose a product of matrices into symmetric/antisymmetric parts:

$$\alpha^i\alpha^j=\tfrac{1}{2}\{\alpha^i,\alpha^j\}+\tfrac{1}{2}[\alpha^i,\alpha^j].$$

• Since $p_i p_j = p_j p_i$ is **symmetric** in (i, j), the antisymmetric part drops:

$$\alpha^i \alpha^j p_i p_j = \frac{1}{2} \{ \alpha^i, \alpha^j \} p_i p_j.$$

• To reproduce $\mathbf{p}^2 \mathbf{1} = \delta^{ij} p_i p_j \mathbf{1}$ for all \mathbf{p} :

$$\frac{1}{2}\{\alpha^i,\alpha^j\} = \delta^{ij}\mathbf{1} \iff \left[\{\alpha^i,\alpha^j\} = 2\,\delta^{ij}\,\mathbf{1}\right].$$

Sufficiency: Algebra \Rightarrow Dispersion

- Assume $\{\alpha^i, \alpha^j\} = 2\delta^{ij}\mathbf{1}, \ \{\alpha^i, \beta\} = 0, \ \beta^2 = \mathbf{1}.$
 - The quadratic term becomes

$$(\boldsymbol{\alpha} \cdot \mathbf{p})^2 = \alpha^i \alpha^j \, p_i p_j = \frac{1}{2} \{ \alpha^i, \alpha^j \} \, p_i p_j = \delta^{ij} p_i p_j \, \mathbf{1} = \mathbf{p}^2 \, \mathbf{1}.$$

• The cross term vanishes:

$$\alpha^{i} p_{i} \beta m + \beta m \alpha^{j} p_{j} = m p_{i} \{\alpha^{i}, \beta\} = 0.$$

- And the mass term: $\beta^2 m^2 = m^2 \mathbf{1}$.
- Therefore

$$H^2 = (\boldsymbol{\alpha} \cdot \mathbf{p} + \beta m)^2 = \mathbf{p}^2 + m^2 \mathbf{1}.$$

10. Dirac Matrices & Representations

Why 4×4 Matrices?

- We need four independent, mutually anticommuting Hermitian matrices: $\alpha^1, \alpha^2, \alpha^3, \beta$, with $(\alpha^i)^2 = \beta^2 = 1$.
- ullet 2 imes 2 Pauli matrices provide at most three anticommuting matrices.
- Hence the **minimal representation** is 4×4
- Dirac spinors have four components.

Explicit Matrices (Dirac / Standard Representation)

Choose

$$\beta = \begin{pmatrix} \mathbf{1}_2 & 0 \\ 0 & -\mathbf{1}_2 \end{pmatrix}, \qquad \alpha^i = \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0 \end{pmatrix} \quad (i=1,2,3).$$

• Quick checks (using $\sigma^i \sigma^j = \delta^{ij} \mathbf{1}_2 + i \epsilon^{ijk} \sigma^k$):

$$(\alpha^{i})^{2} = \begin{pmatrix} \sigma^{i}\sigma^{i} & 0\\ 0 & \sigma^{i}\sigma^{i} \end{pmatrix} = \mathbf{1}_{4}, \qquad \beta^{2} = \mathbf{1}_{4},$$

$$\{\sigma^{i}, \sigma^{j}\} = 0 \qquad \text{as } i \in \mathbb{R}_{+}^{2}, \quad \sigma^{j} \in \mathbb{R}_{+}^$$

$$\alpha^{i}\alpha^{j} + \alpha^{j}\alpha^{i} = \begin{pmatrix} \{\sigma^{i}, \sigma^{j}\} & 0\\ 0 & \{\sigma^{i}, \sigma^{j}\} \end{pmatrix} = 2\delta^{ij}\mathbf{1}_{4},$$

$$\alpha^{i}\beta + \beta\alpha^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\sigma^{i} \\ \sigma^{i} & 0 \end{pmatrix} = 0.$$

From Hamiltonian to Covariant Dirac Equation

Covariant notation (from the Hamiltonian form):

$$\gamma^0 \equiv \beta, \qquad \gamma^i \equiv \beta \, \alpha^i \quad \Rightarrow \quad \alpha^i = \gamma^0 \gamma^i, \; \beta = \gamma^0.$$

Start with the Hamiltonian form

$$i \partial_t \psi = (-i \boldsymbol{\alpha} \cdot \nabla + \beta m) \psi.$$

 \bullet Multiply on the left by $\gamma^0=\beta$ and use $\alpha^i=\gamma^0\gamma^i$:

$$\gamma^{0}(i\partial_{t})\psi = \left(-i\gamma^{0}\alpha^{i}\partial_{i} + \gamma^{0}\beta m\right)\psi = \left(-i\gamma^{i}\partial_{i} + m\right)\psi.$$

Bring all terms to the left:

$$(i\gamma^0\partial_t + i\gamma^i\partial_i - m)\psi = 0 \quad \Rightarrow \quad [(i\gamma^\mu\partial_\mu - m)\psi(x) = 0].$$

Dirac Matrices: Representations & Equivalence

• Covariant notation (from the Hamiltonian form):

$$\gamma^0 \equiv \beta, \qquad \gamma^i \equiv \beta \, \alpha^i.$$

• Clifford algebra (metric $g^{\mu\nu} = \operatorname{diag}(1, -1, -1, -1)$):

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2 g^{\mu\nu} \mathbf{1}.$$

• Not unique: any set $\{\gamma^{\mu}\}$ obeying the Clifford algebra is a valid representation.

Two Common Representations (Examples)

• Dirac (standard) representation

$$\gamma^0 = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \quad \gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}.$$

(Here γ^5 is off-diagonal.)

Chiral (Weyl) representation

$$\gamma^0 = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \quad \gamma^5 = \begin{pmatrix} -\mathbf{1} & 0 \\ 0 & \mathbf{1} \end{pmatrix}.$$

(Here γ^5 is diagonal.)

11. Spin & Lorentz Transformations of a Dirac spinor

Dirac Equation: Degrees of Freedom & Spin

• Relativistic wave equation with 4×4 matrices:

$$(i\gamma^{\mu}\partial_{\mu} - m)\,\psi(x) = 0.$$

The energy and three-momentum must satisfy

$$E^2 = \mathbf{p}^2 + m^2$$

- Four-component spinor ψ yields, at fixed \mathbf{p} , four independent solutions:
 - two positive-energy solutions $E=+\sqrt{{f p}^2+m^2}$ with spin $s=\pm \frac{1}{2};$
 - two **negative-energy** solutions $E=-\sqrt{{f p}^2+m^2}$ with spin $s=\pm\frac{1}{2}.$
- ullet Spin is automatic: the γ^μ contain Pauli matrices; rotations act via

$$\Sigma^i = \frac{1}{2} \begin{pmatrix} \sigma^i & 0 \\ 0 & \sigma^i \end{pmatrix} \quad \Rightarrow \quad s = \pm \frac{1}{2}.$$

How Spinors Change under Lorentz Transformations

• Under a Lorentz transformation (a rotation or a boost), the spinor changes by a 4×4 matrix:

$$\psi \longrightarrow \psi' = S(\Lambda) \psi$$

(think: a matrix that mixes the 4 components of ψ .)

• Finite transformation generated by $\Sigma^{\mu\nu} \equiv \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$:

$$S(\Lambda) = \exp\left(-\frac{i}{4}\,\omega_{\mu\nu}\,\Sigma^{\mu\nu}\right), \qquad \omega_{\mu\nu} = -\omega_{\nu\mu}$$

which leads to

$$\mbox{rotations:} \ J^i \equiv \frac{1}{2} \, \epsilon^{ijk} \, \Sigma^{jk}, \qquad \mbox{boosts:} \ K^i \equiv \Sigma^{0i}.$$

Explicit Σ^i in the Dirac Representation

- ullet The **spin operator** is the rotation generator J^i .
- ullet Using the γ matrices in the Dirac representation:

$$\gamma^0 = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix},$$

one finds

$$\Sigma^{ij} = \frac{i}{2} [\gamma^i, \gamma^j] = \epsilon^{ijk} \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix}.$$

Therefore the rotation generators are

$$\left| \begin{array}{ccc} J^i = \frac{1}{2} \begin{pmatrix} \sigma^i & 0 \\ 0 & \sigma^i \end{array} \right| \quad \Rightarrow \quad \text{eigenvalues } s = \pm \frac{1}{2}.$$

The Triumph of Dirac: Spin (vs. Schrödinger)

Schrödinger (spinless):

$$i \partial_t \psi = \left(-\frac{\nabla^2}{2m} + V \right) \psi,$$

where ψ is a *scalar*. Spin is *not* built in.

- ullet To include spin in NR QM, we add it by hand: $\psi o \Psi = \begin{pmatrix} \psi_\uparrow \\ \psi_\downarrow \end{pmatrix}$
- Dirac (spin built in):

$$(i\,\gamma^\mu\partial_\mu-m)\,\psi=0, \qquad \psi: \mbox{ four-component spinor}.$$

As shown earlier, the rotation generators J^i for the Dirac spinor have eigenvalues $\pm \frac{1}{2}$. Intrinsic spin- $\frac{1}{2}$ appears automatically.

Boost vs. Rotation Generators: Hermiticity & Unitarity

• Rotation generators $J^i \equiv \frac{1}{2} \epsilon^{ijk} \Sigma^{jk}$:

$$J^i = rac{1}{2} egin{pmatrix} \sigma^i & 0 \ 0 & \sigma^i \end{pmatrix} \quad \Rightarrow \quad (J^i)^\dagger = J^i \quad ({\sf Hermitian}).$$

• Boost generators $K^i \equiv \Sigma^{0i}$:

$$K^i = i \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0 \end{pmatrix} \quad \Rightarrow \quad (K^i)^\dagger = -K^i \quad \text{(anti-Hermitian)}.$$

- Finite Lorentz transformations on spinors, $S(\Lambda) = e^{-\frac{i}{4}\,\omega_{\mu\nu}\,\Sigma^{\mu\nu}}$
 - Pure rotation $(\omega_{ij} = \theta_{ij})$: Hermitian generator $\Rightarrow S$ unitary.
 - Pure boost ($\omega_{0i} = \varphi_i$ rapidity): anti-Hermitian generator $\Rightarrow S$ is not unitary (Lorentz group is non-compact).

12. Dirac Adjoint & Conserved Current

Lorentz–covariant density via the Dirac adjoint $\bar{\psi}$

- $\psi^{\dagger}\psi$ is not Lorentz invariant. Why?
- ullet Under a Lorentz transformation Λ , a Dirac spinor changes

$$\psi \longrightarrow \psi' = S(\Lambda) \psi.$$

Then

$$\psi'^\dagger \psi' = \psi^\dagger S^\dagger S \, \psi \quad \text{equals } \psi^\dagger \psi \text{ only if } S^\dagger S = \mathbf{1}.$$

- For pure rotations, S is unitary $(S^{\dagger}S = 1)$.
- For **boosts**, S is *not* unitary, so $\psi'^{\dagger}\psi' \neq \psi^{\dagger}\psi$.
- What can we do?

Spinor Boost Along z from the Explicit Generator

• In the Dirac representation,

$$K^3 \equiv \Sigma^{03} = i \begin{pmatrix} 0 & \sigma^3 \\ \sigma^3 & 0 \end{pmatrix} \equiv i \, M \,, \qquad (M)^\dagger = M \quad \text{(Hermitian)}.$$

• A boost of rapidity η along +z acts as $\psi' = S_z(\eta) \psi$,

$$S_z(\eta) = \exp\left(\frac{\eta}{2}M\right) = \cosh\frac{\eta}{2}\mathbf{1} + M\sinh\frac{\eta}{2}.$$

 \bullet Since M is Hermitian, $S_z^\dagger(\eta) = S_z(\eta)$ and

$$S_z^{\dagger}S_z = \exp(\eta M) \neq \mathbf{1}$$
 for $\eta \neq 0$

If $S^{-1} \neq S^{\dagger}$, what is S^{-1} ?

• For a z-boost with $M=\begin{pmatrix} 0 & \sigma^3 \\ \sigma^3 & 0 \end{pmatrix}$ and $S_z(\eta)=\exp\left(\frac{\eta}{2}M\right)$:

$$\gamma^0 S_z^\dagger \gamma^0 = \gamma^0 S_z \gamma^0 = \exp\Bigl(\tfrac{\eta}{2} \, \gamma^0 M \gamma^0\Bigr) = \exp\Bigl(-\tfrac{\eta}{2} M\Bigr) = S_z^{-1},$$

since $\gamma^0 M \gamma^0 = -M$.

• This relation holds true in general:

$$S^{-1} = \gamma^0 S^{\dagger} \gamma^0 \ .$$

Dirac adjoint and covariant bilinears

- Define the **Dirac adjoint**: $\bar{\psi} \equiv \psi^{\dagger} \gamma^0$.
- Using $S^{-1}=\gamma^0 S^\dagger \gamma^0$, we can show that

$$\begin{split} \bar{\psi}'\psi' &= \psi^{\dagger} S^{\dagger} \gamma^0 S \psi \\ &= \psi^{\dagger} \gamma^0 \gamma^0 S^{\dagger} \gamma^0 S \psi \\ &= \bar{\psi} S^{-1} S \psi = \bar{\psi} \psi. \end{split}$$

Define a proper Lorentz 4-vector current:

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$$

Current Conservation from the Dirac Equation

Dirac equation and its adjoint:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0, \qquad \partial_{\mu}\bar{\psi}\,i\gamma^{\mu}+m\,\bar{\psi}=0.$$

• Compute the divergence of $j^{\mu} \equiv \bar{\psi} \gamma^{\mu} \psi$:

$$\partial_{\mu}j^{\mu} = (\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi + \bar{\psi}\gamma^{\mu}(\partial_{\mu}\psi).$$

Use the two equations:

$$(\partial_{\mu}\bar{\psi})\gamma^{\mu} = -i\,m\,\bar{\psi}, \qquad \gamma^{\mu}\partial_{\mu}\psi = i\,m\,\psi.$$

• Hence the continuity equation holds true:

$$\partial_{\mu}j^{\mu} = (-im\,\bar{\psi})\psi + \bar{\psi}(im\,\psi) = 0.$$

• Identify the probability density and current:

$$j^0 = \bar{\psi} \gamma^0 \psi = \psi^\dagger \psi \ge 0,$$
 unlike Klein–Gordon

13. Negative Energies & the Positron

Dirac Plane Waves: Positive & Negative Energy

• Seek plane-wave solutions of $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$:

$$\psi(x) = u_s(\mathbf{p}) e^{-i\mathbf{p}\cdot\mathbf{x}}$$
 or $\psi(x) = v_s(\mathbf{p}) e^{+i\mathbf{p}\cdot\mathbf{x}}$, $p \cdot x \equiv p_\mu x^\mu$.

 $\bullet \ \mbox{With} \ p^0 \equiv E = \sqrt{{\bf p}^2 + m^2} > 0,$

$$(\gamma^{\mu}p_{\mu}-m)u_{s}(\mathbf{p})=0$$
 ("positive-energy" branch),

$$(\gamma^{\mu}p_{\mu}+m)\,v_{s}(\mathbf{p})=0$$
 ("negative-energy" branch).

 Key point: despite the negative-energy eigenvalue, the density is always positive:

$$j^0 = \psi^{\dagger} \psi \ge 0.$$

The issue is *stability*: in a one-particle picture, why not fall into ever-lower (negative) energies?

If negative-energy states exist, why doesn't an electron radiate down to E < 0?

Problem: vacuum instability if E < 0 states are empty

Dirac's Idea: the "Sea" of Negative-Energy Electrons

• Dirac's proposal (historical):

- All negative-energy electron states are filled in the vacuum (Pauli exclusion blocks further decays).
- 2 Removing one electron from the sea leaves a **hole**: it behaves like a particle with charge +e and energy +E (later identified as the *positron*).

Modern View (QFT): Antiparticles without a Literal Sea

• Promote ψ to a **field operator**; expand in modes:

$$\psi(x) = \sum_{s} \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[b_s(\mathbf{p}) u_s(\mathbf{p}) e^{-ip \cdot x} + d_s^{\dagger}(\mathbf{p}) v_s(\mathbf{p}) e^{+ip \cdot x} \right].$$

- Interpretation: b_s^{\dagger} creates an electron; d_s^{\dagger} creates an antiparticle (positron). Negative-frequency modes are reinterpreted as creation of antiparticles, not negative-energy electrons.
- Charge and density:

$$Q = \int d^3x \, j^0 \, \propto \, \sum_{\mathbf{p},s} \left[b_s^\dagger b_s \, - \, d_s^\dagger d_s \right].$$

• **Bottom line:** QFT keeps $j^0 = \psi^{\dagger} \psi \geq 0$, preserves Lorentz covariance, and explains antiparticles *without* an infinitely filled sea—just creation/annihilation operators and a stable vacuum.

Anderson (1932): Cloud Chamber Setup & Strategy

- \bullet Apparatus: vertical expansion (Wilson) cloud chamber in a strong magnetic field B
- Cosmic rays provide charged particles.
- A lead plate is mounted midway through the chamber (~6 mm thick). (Energy loss in Pb makes tracks curve more after crossing the lead plate.)

Why the Lead Plate? Direction from Curvature Change

• In a uniform B field, track radius r is set by momentum:

$$r = \frac{p}{|q|B} \,.$$

• Crossing the lead plate \Rightarrow energy loss ($\Delta E < 0$) and thus momentum loss ($\Delta p < 0$).

$$p_{\mathsf{after}} < p_{\mathsf{before}} \quad \Rightarrow \quad r_{\mathsf{after}} < r_{\mathsf{before}}.$$

- **Read the direction:** the track goes from the *larger-radius* arc (before plate) to the *smaller-radius* arc (after plate).
- Then read the sign: with the known B direction, the sense of bending gives sign(q).

Evidence from the Track: Light, Positively Charged

- Famous photograph: track curves more above the plate (lower momentum), and bends in the direction for positive charge.
 (Upward-going, left-curving in the published image.)
- Mass inference: Proton?
 - Range/energy loss in Pb and gas: protons with the same curvature would stop within mm, but the observed tracks are cm-scale.
- Conclusion: a light ($\approx m_e$) particle with *positive* charge.
- It is a positron.

14. Helicity and Chirality

Helicity

• Helicity: projection of spin on momentum direction

$$h = \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}, \quad \vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$$

From Dirac to Weyl: Setup (Chiral Rep.)

Start from the momentum-space Dirac equation:

$$(\not p - m) u(p) = 0, \qquad \not p = \gamma^{\mu} p_{\mu}$$

Chiral (Weyl) representation:

$$\gamma^0 = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \quad \gamma^5 = \begin{pmatrix} -\mathbf{1} & 0 \\ 0 & \mathbf{1} \end{pmatrix}$$

Spinor decomposition and Pauli 4-vectors:

$$u(p) = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}, \qquad \sigma^{\mu} = (\mathbf{1}, \vec{\sigma}), \quad \bar{\sigma}^{\mu} = (\mathbf{1}, -\vec{\sigma}).$$

• With metric diag(+,-,-,-) and $p_{\mu}=(E,-\vec{p})$:

$$p \cdot \sigma = E \mathbf{1} - \vec{p} \cdot \vec{\sigma}, \qquad p \cdot \bar{\sigma} = E \mathbf{1} + \vec{p} \cdot \vec{\sigma}.$$

Block Form of $p \rightarrow m$

• Using the chiral γ^{μ} :

$$\mathbf{p} = p_{\mu} \gamma^{\mu} = \begin{pmatrix} 0 & p \cdot \sigma \\ p \cdot \bar{\sigma} & 0 \end{pmatrix}$$

Therefore,

$$(\not p - m) = \begin{pmatrix} -m & p \cdot \sigma \\ p \cdot \bar{\sigma} & -m \end{pmatrix}.$$

• Acting on $u(p) = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$:

$$\begin{pmatrix} -m & p \cdot \sigma \\ p \cdot \bar{\sigma} & -m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix} -m\psi_L + (p \cdot \sigma)\psi_R \\ (p \cdot \bar{\sigma})\psi_L - m\psi_R \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Extracting the Two Weyl Equations

• From upper two components:

$$(p \cdot \sigma) \, \psi_R = m \, \psi_L.$$

• From lower two components:

$$(p \cdot \bar{\sigma}) \psi_L = m \psi_R.$$

• Massless limit (m = 0) decouples the chiralities:

$$(p \cdot \sigma) \psi_R = 0, \qquad (p \cdot \bar{\sigma}) \psi_L = 0,$$

i.e. two independent Weyl equations.

From Weyl Equations to Helicity Eigenstates

Massless Weyl equations:

$$(p \cdot \sigma) \psi_R = 0, \qquad (p \cdot \bar{\sigma}) \psi_L = 0.$$

 $\bullet \ \ \text{For} \ \vec{p} = |\vec{p}| \hat{\vec{p}} \text{, } E = |\vec{p}| \text{:}$

$$(E\mathbf{1} - \vec{p} \cdot \vec{\sigma})\psi_R = 0 \implies (\vec{\sigma} \cdot \hat{\vec{p}})\psi_R = +\psi_R,$$
$$(E\mathbf{1} + \vec{p} \cdot \vec{\sigma})\psi_L = 0 \implies (\vec{\sigma} \cdot \hat{\vec{p}})\psi_L = -\psi_L.$$

- Thus, ψ_R and ψ_L are helicity eigenstates with eigenvalues +1 and -1.
- Interpreting $\vec{\sigma}/2$ as spin for spin- $\frac{1}{2}$:

 $\psi_R:\ h=+\frac{1}{2}\ ({\sf spin}\ {\sf parallel}\ {\sf to}\ \vec p),\quad \psi_L:\ h=-\frac{1}{2}\ ({\sf spin}\ {\sf anti-parallel}).$

Chirality: Massless vs Massive Fermions

• Massless case (m=0): chiralities decouple

$$p_{\mu}\sigma^{\mu}\psi_{R} = 0, \qquad p_{\mu}\bar{\sigma}^{\mu}\psi_{L} = 0,$$

so chirality is conserved and

chirality = helicity.

• Massive case $(m \neq 0)$: the mass term couples chiralities

$$p_{\mu}\sigma^{\mu}\psi_{R} = m\,\psi_{L}, \qquad p_{\mu}\bar{\sigma}^{\mu}\psi_{L} = m\,\psi_{R},$$

so chirality is not conserved.

Left-handed Neutrinos in the Standard Model

- Experiment: weak interactions violate parity maximally.
 - Wu experiment (1957): beta decay asymmetry.
 - Goldhaber experiment (1958): neutrinos are left-helical.
- Theory: weak force is an $SU(2)_L$ gauge interaction.

$$L_{\ell} = \begin{pmatrix} \nu_{\ell} \\ \ell^{-} \end{pmatrix}_{L}, \qquad \ell = e, \mu, \tau$$

Only left-chiral doublets couple to W^{\pm} , Z bosons.

- No right-handed neutrino field exists in the minimal SM.
- ⇒ In the SM: only **left-handed neutrinos** exist.

Summary: Why Chirality Matters

- Helicity: intuitive picture spin along momentum.
- Chirality: fundamental in the Standard Model.
- Electroweak gauge structure:
 - Left-chiral fermions form $SU(2)_L$ doublets:

$$L_{\ell} = \begin{pmatrix} \nu_{\ell} \\ \ell^{-} \end{pmatrix}_{L}, \qquad Q_{q} = \begin{pmatrix} u \\ d \end{pmatrix}_{L}$$

• Right-chiral fermions are $SU(2)_L$ singlets:

$$e_R, u_R, d_R \pmod{\nu_R}$$
 in SM)

- This chiral asymmetry explains:
 - Maximal parity violation in weak interactions.
 - Different coupling strengths of left- vs. right-handed fields.

