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Introduction

Why Relativistic Quantum Mechanics?

Non-relativistic quantum mechanics does not respect special relativity.

The Schrödinger equation is built from the non-relativistic energy
relation:

E =
p2

2m
+ V (x).

To describe high–energy particles, we need a framework that
combines:

1 Quantum mechanics
2 Lorentz invariance

This naturally points toward quantum field theory, but the first step
is to study relativistic single-particle equations.
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Natural Units

Definition

Natural units set fundamental constants to 1:

ℏ = 1, c = 1 (often also kB = 1).

Consequences:

Energy, momentum, and mass share the same unit (GeV is standard).
Length and time carry inverse energy units:

[t] = [ℓ] =
1

mass

Derivatives carry energy dimension:

[∂µ] = mass

.
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Natural Units

Quick Conversions and Heuristics

Useful constants:

ℏc ≈ 0.1973269804 GeV fm.

Core conversions:

1 GeV−1 ≈ 0.1973 fm ≈ 6.582× 10−25 s.

Cross sections:

[σ] = mass−2 ⇒ 1 GeV−2 ≈ 0.3894 mb.
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Natural Units

Action is Dimensionless

In the path integral,

Z =

∫
Dϕ exp

{
i

ℏ
S[ϕ]

}
.

The exponent must be dimensionless. Therefore,

[S] = [ℏ].

In natural units ℏ = 1, hence S is dimensionless.
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Spacetime Four-Vectors & Minkowski Metric

3. Spacetime Four-Vectors &
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Spacetime Four-Vectors & Minkowski Metric

Spacetime Coordinates

In relativity, space and time combine into a single contravariant
four-vector:

xµ = (t, x) = (t, x, y, z).

We use natural units with c = 1.

Index convention:

µ = 0, 1, 2, 3 ⇒ x0 = t, x1 = x, x2 = y, x3 = z.

Contravariant vector = components with an upper index ( µ).

Later, covariant vectors will be written with a lower index ( µ).
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Spacetime Four-Vectors & Minkowski Metric

Minkowski Metric (Definition)

In special relativity, spacetime is described by the Minkowski metric:

gµν = diag(1,−1,−1,−1).

This defines the invariant spacetime interval:

s2 = gµνx
µxν = t2 − x2 − y2 − z2.

Using the metric, we can lower indices:

xµ = gµνx
ν .

For the spacetime coordinate:

xµ = (t, x, y, z) −→ xµ = (t, −x, −y, −z).

The key: the time component keeps its sign, while spatial
components change sign.
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Spacetime Four-Vectors & Minkowski Metric

Four-Momentum and Invariant Mass

Define the contravariant four-momentum:

pµ = (E, px, py, pz).

Lowering the index with the Minkowski metric:

pµ = gµνp
ν = (E, −px, −py, −pz).

Lorentz-invariant scalar ⇒ rest mass squared

pµp
µ = gµνp

µpν = E2 − p⃗ 2 = m2.

Thus, the relativistic energy–momentum relation:

E2 = p⃗ 2 +m2.
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Spacetime Four-Vectors & Minkowski Metric

Covariant and Contravariant Derivatives

Define the derivative operator:

∂µ ≡ ∂

∂xµ
.

Explicitly:

∂µ =

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

Raising the index with the Minkowski metric
gµν = diag(1,−1,−1,−1):

∂µ = gµν ∂ν =

(
∂

∂t
, − ∂

∂x
, − ∂

∂y
, − ∂

∂z

)
.

The d’Alembertian operator (wave operator) is defined as

□ ≡ ∂µ∂
µ =

∂2

∂t2
−∇2.
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Lorentz Transformations

4. Lorentz Transformations
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Lorentz Transformations

Definition of Lorentz Transformations

A Lorentz transformation is any linear map

xµ −→ x′µ =
∑
ν

Λµν x
ν = Λµν x

ν

that preserves the Minkowski metric:

gρσ = gµν Λ
µ
ρ Λ

ν
σ.

Invariance of the interval:

s′2 ≡ gαβ x
′αx′β

= gαβ (Λ
α
µx

µ)(Λβνx
ν)

=
(
gαβΛ

α
µΛ

β
ν

)
xµxν = gµνx

µxν = s2.

The Lorentz group therefore contains:
Rotations in 3D space (leave t unchanged).
Boosts (mix t with a spatial direction).
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Lorentz Transformations

Example: Lorentz Boost in the z-Direction

Consider a boost along the z axis with velocity v.

Define

γ =
1√

1− v2
, β = v.

The Lorentz transformation matrix is

Λµν =


γ 0 0 −γβ
0 1 0 0
0 0 1 0

−γβ 0 0 γ

 .

Transformation of coordinates:

t′ = γ(t− βz),

x′ = x, y′ = y,

z′ = γ(z − βt).
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Conserved Current and Charge

5. Conserved Current and Charge
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Conserved Current and Charge

Conservation Law

A conserved quantity is described by a continuity equation:

∂tj
0 +∇ · j = 0.

In relativistic notation, we combine density and current into a
four-vector:

jµ(x) = (j0, j), ∂µj
µ = 0.
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Conserved Current and Charge

Conserved Charge

Define the charge as the spatial integral of the time component:

Q(t) =

∫
d3x j0(t,x).

Take the time derivative:

dQ

dt
=

∫
d3x ∂tj

0(t,x).

Using ∂µj
µ = 0:

∂tj
0 = −∇ · j.

Thus,
dQ

dt
= −

∫
d3x ∇ · j.
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Conserved Current and Charge

Divergence Theorem and Conservation

Apply Gauss’s (divergence) theorem:∫
d3x ∇ · j =

∮
∂V
dS · j.

If the current j vanishes sufficiently fast at spatial infinity:∮
∞
dS · j = 0.

Therefore:
dQ

dt
= 0.

⇒ The charge Q is a conserved quantity.
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Conserved Current and Charge

Probability Current in Quantum Mechanics

Start from the Schrödinger equation:

i
∂ψ

∂t
=

(
−∇2

2m
+ V (x)

)
ψ.

Define probability density:

ρ(t,x) = |ψ(t,x)|2.

Derive the continuity equation:

∂ρ

∂t
+∇ · j = 0.

⇒ Probability current:

j =
1

2mi

(
ψ∗∇ψ − ψ∇ψ∗).
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Conserved Current and Charge

Interpretation: Probability Conservation

The conserved “charge” in quantum mechanics is the total
probability:

Q =

∫
d3x ρ(t,x) =

∫
d3x |ψ|2.

Conservation law:
dQ

dt
= 0.

Physical meaning:

Probability never disappears or appears spontaneously.
A particle is always found somewhere in space.

This is the non-relativistic counterpart of current conservation.
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From Energy–Momentum to the Schrödinger Equation

6. From E = p2

2m + V
to the Schrödinger equation
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From Energy–Momentum to the Schrödinger Equation

Four-Momentum as an Operator

In quantum theory, promote the four-momentum to a differential
operator:

pµ = (E,p) = i ∂µ.

With the Minkowski metric gµν = diag(1,−1,−1,−1):

∂µ =
∂

∂xµ
=

(
∂

∂t
, −∇

)
.

Therefore:
pµ =

(
i ∂t, −i∇

)
.

Components:

p0 = i ∂t (energy operator), p = −i∇ (momentum operator).
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From Energy–Momentum to the Schrödinger Equation

Schrödinger Equation from E = p2

2m + V

Start from the non-relativistic energy relation:

E =
p2

2m
+ V (x).

Substitute the operators:

E → i ∂t, p → −i∇.

Acting on a wavefunction ψ(t,x):

i ∂tψ(t,x) =

(
−∇2

2m
+ V (x)

)
ψ(t,x).

This is the time-dependent Schrödinger equation.
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Klein–Gordon Equation

7. Klein–Gordon Equation
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Klein–Gordon Equation

Motivation: Relativistic Wave Equation

Start from the relativistic energy–momentum relation:

E2 = p2 +m2.

Historically, the Klein–Gordon (KG) equation was proposed
independently in 1926 by Oskar Klein and Walter Gordon as the
relativistic analogue of the Schrödinger equation.

Goal: promote E and p to operators and derive a Lorentz-invariant
wave equation for a scalar field ϕ(x).
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Klein–Gordon Equation

Derivation from E2 = p2 +m2

Use the four-momentum operator pµ = i ∂µ, with

gµν = diag(1,−1,−1,−1) ⇒ ∂µ = (∂t,−∇).

⇒
E → i∂t, p → −i∇.

Act on a scalar field ϕ(t,x):

(i∂t)
2ϕ =

[
(−i∇)2 +m2

]
ϕ =⇒ − ∂2t ϕ =

(
− ∇2 +m2

)
ϕ.

Rearranging:(
∂2t −∇2 +m2

)
ϕ(t,x) = 0 ⇒ (∂µ∂

µ +m2)ϕ = 0

Jeonghyeon Song (Konkuk University) Relativistic Quantum Mechanics August 25 & 26, 2025 28 / 79



Klein–Gordon Equation

Covariant Form and Solutions

Let’s interpret the KG equation

(∂µ∂
µ +m2)ϕ = 0

Plane-wave ansatz ϕ(x) = e−ip·x with

p · x = pµx
µ = Et− p·x

The KG equation gives

(−pµpµ +m2)ϕ = 0 =⇒ pµp
µ = m2 =⇒ E2 = p2 +m2.

OOPS! Solutions come with E = ±
√
p2 +m2. (Negative-frequency

solutions are physical; in QFT they correspond to antiparticles.)
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Klein–Gordon Current

8. Klein–Gordon Current and
Continuity Equation
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Klein–Gordon Current

Step 1: Klein–Gordon Equation and Its Conjugate

Klein–Gordon equation for a (complex) scalar field:

(∂µ∂
µ +m2)ϕ(x) = 0.

Its complex conjugate:

(∂µ∂
µ +m2)ϕ∗(x) = 0.

Multiply the first by ϕ∗ and the second by ϕ:

ϕ∗ ∂µ∂
µϕ+m2ϕ∗ϕ = 0, ϕ ∂µ∂

µϕ∗ +m2ϕϕ∗ = 0.

Subtract:

ϕ∗ ∂µ∂
µϕ − ϕ∂µ∂

µϕ∗ = 0 (m2 terms cancel).
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Klein–Gordon Current

Step 2: Turn It Into a Divergence

Product rule identity:

∂µ(ϕ
∗∂µϕ− ϕ∂µϕ∗) = ϕ∗ ∂µ∂

µϕ − ϕ∂µ∂
µϕ∗.

We get the continuity equation:

∂µj
µ = 0, jµ ≡ i

(
ϕ∗∂µϕ− ϕ∂µϕ∗

)
.

Components (with gµν = diag(1,−1,−1,−1) so ∂µ = (∂t,−∇)):

j0 = i
(
ϕ∗∂tϕ− ϕ∂tϕ

∗), j = − i
(
ϕ∗∇ϕ− ϕ∇ϕ∗

)
.
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Klein–Gordon Current

Step 3: Conserved Charge

Define the charge (time component integrated over space):

Q(t) ≡
∫
d3x j0(t,x).

Since ∂µj
µ = 0, we have

dQ

dt
= 0 ⇒ Q is conserved.

j0(t,x) is the probability density?
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Klein–Gordon Current

KG Current: j0 is not positive definite

Take a plane-wave solution:

ϕ(x) = Ae−iEt+ip·x, E = ±
√

p2 +m2.

With ∂tϕ = −iEϕ, ∇ϕ = ipϕ and jµ = i(ϕ∗∂µϕ− ϕ∂µϕ∗),

j0 = i
(
ϕ∗∂tϕ− ϕ∂tϕ

∗) = 2E |A|2,

j = − i
(
ϕ∗∇ϕ− ϕ∇ϕ∗

)
= 2p |A|2.

Since E has both signs in relativistic theory, j0 = 2E|A|2 can be
negative ⇒ j0 is not a probability density.
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Klein–Gordon Current

Why j0 is not positive: second order in time

Schrödinger (first order in time):

i ∂tψ = Hψ ⇒ ∂t|ψ|2 +∇·j = 0, ρS = |ψ|2 ≥ 0.

Klein–Gordon (second order in time):

(∂2t −∇2 +m2)ϕ = 0 ⇒ ∂µj
µ = 0, j0 = i

(
ϕ∗∂tϕ− ∂tϕ

∗ ϕ
)
.

Because KG is second order, the conserved density necessarily involves
∂tϕ, so it is not |ϕ|2 and need not be positive.

Hence the non-positivity of j0 is a structural consequence of the
second-order time evolution, independent of any particular solution.
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Klein–Gordon Current

Interpretation & Nonrelativistic Limit

Interpretation:
For a complex scalar, jµ is the conserved U(1) charge current.
For a real scalar (ϕ = ϕ∗), jµ ≡ 0 (no global phase symmetry).

NR limit (recover Schrödinger):

ϕ(x) =
e−imt√
2m

Ψ(t,x) =⇒ j0 ≈ |Ψ|2, j ≈ 1

m
Im
(
Ψ∗∇Ψ

)
.

Thus, in the nonrelativistic regime the KG current reduces to the
familiar probability density and current.
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Dirac: Motivation & Linearization

9. Dirac: Motivation &
Linearization
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Dirac: Motivation & Linearization

Historical Prelude (1926–1933)

1926: Klein & Gordon propose the first relativistic wave eq. for a
scalar. Good Lorentz covariance, but j0 not positive.

Dirac’s aim (1928): Find a first-order in time & first-order in space
relativistic equation with a positive density
⇒ linearize E2 = p2 +m2.

Negative energies: Dirac’s hole theory (∼1930)
⇒ prediction of antiparticles.

1932: Anderson discovers the positron, confirming Dirac’s picture.

Modern view: Negative-frequency solutions ⇒ antiparticles in QFT
(no hole sea needed).

Refs: P. A. M. Dirac, Proc. R. Soc. A 117 (1928) 610; Dirac, Proc. R. Soc. A 126
(1930) 360; C. D. Anderson, Science 76 (1932) 238.
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Dirac: Motivation & Linearization

Motivation: First Order in Time

The Klein–Gordon (KG) equation is second order in time:

(∂2t −∇2 +m2)ϕ = 0,

whose conserved density j0 is not positive definite.

Goal: Find a relativistic wave equation that is first order in time
derivative, so we can have a positive-definite density and a
probability interpretation, like Schrödinger’s theory.

Strategy: Linearize the relativistic energy:

E2 = p2 +m2 ⇒ E = α·p+ βm,

with suitable matrices α, β.
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Dirac: Motivation & Linearization

Linearization Ansatz: E = α · p+ βm

Postulate a Hamiltonian linear in p:

H = α·p+ βm, α = (α1, α2, α3).

Require that squaring reproduces the dispersion:

H2 = (α·p+ βm)2 = p2 +m2 1.
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Dirac: Motivation & Linearization

Squaring the Linear Hamiltonian: Expansion

Start with
H = αipi + βm (i = 1, 2, 3),

and expand:

H2 = (αipi)(α
jpj) + αipi βm+ βmαjpj + β2m2.

Since

(αipi)(α
jpj) = αiαj pipj , αipi βm+ βmαjpj = mpi(α

iβ + βαi),

we have

H2 = αiαj pipj︸ ︷︷ ︸
quadratic in p

+mpi(α
iβ + βαi)︸ ︷︷ ︸

linear in p

+β2m2.
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Dirac: Motivation & Linearization

Why the linear term must vanish (and the mass term)

To match H2 = p2 +m21, there must be no term linear in pi:

mpi(α
iβ + βαi) = 0 for all p

=⇒ {αi, β} = 0, for each i

where the anti-commutator is {A,B} = AB +BA.

The mass term must equal m21:

β2m2 = m21 =⇒ β2 = 1 .
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Dirac: Motivation & Linearization

For the p2 piece: using commutator & anticommutator

Quadratic part:
(α·p)2 = αiαj pipj .

Decompose a product of matrices into symmetric/antisymmetric
parts:

αiαj = 1
2{α

i, αj}+ 1
2 [α

i, αj ].

Since pipj = pjpi is symmetric in (i, j), the antisymmetric part
drops:

αiαj pipj =
1
2{α

i, αj} pipj .

To reproduce p21 = δijpipj 1 for all p:

1
2{α

i, αj} = δij1 ⇐⇒ {αi, αj} = 2 δij 1 .
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Dirac: Motivation & Linearization

Sufficiency: Algebra ⇒ Dispersion

Assume {αi, αj} = 2δij1, {αi, β} = 0, β2 = 1.

The quadratic term becomes

(α·p)2 = αiαj pipj =
1
2{α

i, αj} pipj = δijpipj 1 = p2 1.

The cross term vanishes:

αipi βm+ βmαjpj = mpi{αi, β} = 0.

And the mass term: β2m2 = m21.

Therefore
H2 = (α·p+ βm)2 = p2 +m2 1 .
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Dirac Matrices & Representations

10. Dirac Matrices &
Representations
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Dirac Matrices & Representations

Why 4× 4 Matrices?

We need four independent, mutually anticommuting Hermitian
matrices: α1, α2, α3, β, with (αi)2 = β2 = 1.

2× 2 Pauli matrices provide at most three anticommuting matrices.

Hence the minimal representation is 4× 4

Dirac spinors have four components.
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Dirac Matrices & Representations

Explicit Matrices (Dirac / Standard Representation)

Choose

β =

(
12 0

0 −12

)
, αi =

(
0 σi

σi 0

)
(i = 1, 2, 3).

Quick checks (using σiσj = δij12 + iϵijkσk):

(αi)2 =

(
σiσi 0

0 σiσi

)
= 14, β2 = 14,

αiαj + αjαi =

(
{σi, σj} 0

0 {σi, σj}

)
= 2δij14,

αiβ + βαi =

(
0 σi

−σi 0

)
+

(
0 −σi

σi 0

)
= 0.
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Dirac Matrices & Representations

From Hamiltonian to Covariant Dirac Equation

Covariant notation (from the Hamiltonian form):

γ0 ≡ β, γi ≡ β αi ⇒ αi = γ0γi, β = γ0.

Start with the Hamiltonian form

i ∂tψ =
(
− iα·∇+ β m

)
ψ.

Multiply on the left by γ0 = β and use αi = γ0γi:

γ0(i∂t)ψ =
(
− i γ0αi∂i + γ0β m

)
ψ =

(
− i γi∂i +m

)
ψ.

Bring all terms to the left:(
i γ0∂t + i γi∂i −m

)
ψ = 0 ⇒ (i γµ∂µ −m)ψ(x) = 0 .
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Dirac Matrices & Representations

Dirac Matrices: Representations & Equivalence

Covariant notation (from the Hamiltonian form):

γ0 ≡ β, γi ≡ β αi.

Clifford algebra (metric gµν = diag(1,−1,−1,−1)):

{γµ, γν} = 2 gµν 1.

Not unique: any set {γµ} obeying the Clifford algebra is a valid
representation.
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Dirac Matrices & Representations

Two Common Representations (Examples)

Dirac (standard) representation

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
0 1

1 0

)
.

(Here γ5 is off-diagonal.)

Chiral (Weyl) representation

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−1 0

0 1

)
.

(Here γ5 is diagonal.)
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Spin & Lorentz Transformations

11. Spin & Lorentz
Transformations of a Dirac spinor
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Spin & Lorentz Transformations

Dirac Equation: Degrees of Freedom & Spin

Relativistic wave equation with 4× 4 matrices:

(i γµ∂µ −m)ψ(x) = 0.

The energy and three-momentum must satisfy

E2 = p2 +m2

Four-component spinor ψ yields, at fixed p, four independent
solutions:

two positive-energy solutions E = +
√
p2 +m2 with spin s = ± 1

2 ;

two negative-energy solutions E = −
√
p2 +m2 with spin s = ± 1

2 .

Spin is automatic: the γµ contain Pauli matrices; rotations act via

Σi = 1
2

(
σi 0

0 σi

)
⇒ s = ±1

2 .
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Spin & Lorentz Transformations

How Spinors Change under Lorentz Transformations

Under a Lorentz transformation (a rotation or a boost), the spinor
changes by a 4× 4 matrix:

ψ −→ ψ′ = S(Λ)ψ

(think: a matrix that mixes the 4 components of ψ.)

Finite transformation generated by Σµν ≡ i
2 [γ

µ, γν ]:

S(Λ) = exp

(
− i

4
ωµν Σ

µν

)
, ωµν = −ωνµ

which leads to

rotations: J i ≡ 1

2
ϵijk Σjk, boosts: Ki ≡ Σ0i.
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Spin & Lorentz Transformations

Explicit Σi in the Dirac Representation

The spin operator is the rotation generator J i.

Using the γ matrices in the Dirac representation:

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
,

one finds

Σij =
i

2
[γi, γj ] = ϵijk

(
σk 0

0 σk

)
.

Therefore the rotation generators are

J i =
1

2

(
σi 0

0 σi

)
⇒ eigenvalues s = ±1

2 .
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Spin & Lorentz Transformations

The Triumph of Dirac: Spin (vs. Schrödinger)

Schrödinger (spinless):

i ∂tψ =

(
−∇2

2m
+ V

)
ψ,

where ψ is a scalar. Spin is not built in.

To include spin in NR QM, we add it by hand: ψ → Ψ =

(
ψ↑
ψ↓

)
Dirac (spin built in):

(i γµ∂µ −m)ψ = 0, ψ : four-component spinor.

As shown earlier, the rotation generators J i for the Dirac spinor have
eigenvalues ±1

2 . Intrinsic spin-12 appears automatically.
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Spin & Lorentz Transformations

Boost vs. Rotation Generators: Hermiticity & Unitarity

Rotation generators J i ≡ 1
2ϵ
ijkΣjk:

J i =
1

2

(
σi 0

0 σi

)
⇒ (J i)† = J i (Hermitian).

Boost generators Ki ≡ Σ0i:

Ki = i

(
0 σi

σi 0

)
⇒ (Ki)† = −Ki (anti-Hermitian).

Finite Lorentz transformations on spinors, S(Λ) = e−
i
4
ωµν Σµν

Pure rotation (ωij = θij): Hermitian generator ⇒ S unitary.
Pure boost (ω0i = φi rapidity): anti-Hermitian generator ⇒ S is not
unitary (Lorentz group is non-compact).
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Dirac Adjoint, Bilinears & Current

12. Dirac Adjoint & Conserved
Current
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Dirac Adjoint, Bilinears & Current

Lorentz–covariant density via the Dirac adjoint ψ̄

ψ†ψ is not Lorentz invariant. Why?

Under a Lorentz transformation Λ, a Dirac spinor changes

ψ −→ ψ′ = S(Λ)ψ.

Then
ψ′†ψ′ = ψ†S†S ψ equals ψ†ψ only if S†S = 1.

For pure rotations, S is unitary (S†S = 1).

For boosts, S is not unitary, so ψ′†ψ′ ̸= ψ†ψ.

What can we do?
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Dirac Adjoint, Bilinears & Current

Spinor Boost Along z from the Explicit Generator

In the Dirac representation,

K3 ≡ Σ03 = i

(
0 σ3

σ3 0

)
≡ iM , (M)† =M (Hermitian).

A boost of rapidity η along +z acts as ψ′ = Sz(η)ψ,

Sz(η) = exp
(η
2
M
)

= cosh
η

2
1 + M sinh

η

2
.

Since M is Hermitian, S†
z(η) = Sz(η) and

S†
zSz = exp(ηM) ̸= 1 for η ̸= 0
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Dirac Adjoint, Bilinears & Current

If S−1 ̸= S†, what is S−1?

For a z–boost with M =

(
0 σ3

σ3 0

)
and Sz(η) = exp

(η
2M

)
:

γ0S†
zγ

0 = γ0Szγ
0 = exp

(
η
2 γ

0Mγ0
)
= exp

(
− η

2M
)
= S−1

z ,

since γ0Mγ0 = −M .

This relation holds true in general:

S−1 = γ0S†γ0 .
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Dirac Adjoint, Bilinears & Current

Dirac adjoint and covariant bilinears

Define the Dirac adjoint: ψ̄ ≡ ψ†γ0.

Using S−1 = γ0S†γ0, we can show that

ψ̄′ψ′ = ψ†S†γ0Sψ

= ψ†γ0γ0S†γ0Sψ

= ψ̄S−1Sψ = ψ̄ψ.

Define a proper Lorentz 4-vector current:

jµ = ψ̄γµψ
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Dirac Adjoint, Bilinears & Current

Current Conservation from the Dirac Equation

Dirac equation and its adjoint:

(iγµ∂µ −m)ψ = 0, ∂µψ̄ iγ
µ +mψ̄ = 0.

Compute the divergence of jµ ≡ ψ̄γµψ:

∂µj
µ = (∂µψ̄)γ

µψ + ψ̄γµ(∂µψ).

Use the two equations:

(∂µψ̄)γ
µ = − im ψ̄, γµ∂µψ = imψ.

Hence the continuity equation holds true:

∂µj
µ = (−im ψ̄)ψ + ψ̄(imψ) = 0.

Identify the probability density and current:

j0 = ψ̄γ0ψ = ψ†ψ ≥ 0, unlike Klein–Gordon
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Negative Energies & Positron

13. Negative Energies & the
Positron
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Negative Energies & Positron

Dirac Plane Waves: Positive & Negative Energy

Seek plane-wave solutions of (iγµ∂µ −m)ψ = 0:

ψ(x) = us(p) e
−ip·x or ψ(x) = vs(p) e

+ip·x, p · x ≡ pµx
µ.

With p0 ≡ E =
√

p2 +m2 > 0,

(γµpµ −m)us(p) = 0 (“positive-energy” branch),

(γµpµ +m) vs(p) = 0 (“negative-energy” branch).

Key point: despite the negative-energy eigenvalue, the density is
always positive:

j0 = ψ†ψ ≥ 0.

The issue is stability: in a one-particle picture, why not fall into
ever-lower (negative) energies?
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Negative Energies & Positron

If negative-energy states exist, why doesn’t an electron
radiate down to E < 0?
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Negative Energies & Positron

Dirac’s Idea: the “Sea” of Negative-Energy Electrons

Dirac’s proposal (historical):
1 All negative-energy electron states are filled in the vacuum (Pauli

exclusion blocks further decays).
2 Removing one electron from the sea leaves a hole: it behaves like a

particle with charge +e and energy +E (later identified as the
positron).
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Negative Energies & Positron

Modern View (QFT): Antiparticles without a Literal Sea

Promote ψ to a field operator; expand in modes:

ψ(x) =
∑
s

∫
d3p

(2π)3
1√
2Ep

[
bs(p)us(p) e

−ip·x + d†s(p) vs(p) e
+ip·x

]
.

Interpretation: b†s creates an electron; d†s creates an antiparticle
(positron). Negative-frequency modes are reinterpreted as creation of
antiparticles, not negative-energy electrons.

Charge and density:

Q =

∫
d3x j0 ∝

∑
p,s

[
b†sbs − d†sds

]
.

Bottom line: QFT keeps j0 = ψ†ψ ≥ 0, preserves Lorentz
covariance, and explains antiparticles without an infinitely filled
sea—just creation/annihilation operators and a stable vacuum.
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Negative Energies & Positron

Anderson (1932): Cloud Chamber Setup & Strategy

Apparatus: vertical expansion (Wilson) cloud chamber in a strong
magnetic field B

Cosmic rays provide charged particles.

A lead plate is mounted midway through the chamber (∼6mm
thick). (Energy loss in Pb makes tracks curve more after crossing the lead plate.)
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Negative Energies & Positron

Why the Lead Plate? Direction from Curvature Change

In a uniform B field, track radius r is set by momentum:

r =
p

|q|B
.

Crossing the lead plate ⇒ energy loss (∆E < 0) and thus momentum
loss (∆p < 0).

pafter < pbefore ⇒ rafter < rbefore.

Read the direction: the track goes from the larger-radius arc (before
plate) to the smaller-radius arc (after plate).

Then read the sign: with the known B direction, the sense of
bending gives sign(q).
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Negative Energies & Positron

Evidence from the Track: Light, Positively Charged

Famous photograph: track curves more above the plate (lower
momentum), and bends in the direction for positive charge.
(Upward-going, left-curving in the published image.)

Mass inference: Proton?
Range/energy loss in Pb and gas: protons with the same curvature
would stop within mm, but the observed tracks are cm-scale.

Conclusion: a light (≈ me) particle with positive charge.

It is a positron.
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Helicity and Chirality

14. Helicity and Chirality
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Helicity and Chirality

Helicity

Helicity: projection of spin on momentum direction

h =
Σ⃗ · p⃗
|p⃗|

, Σ⃗ =

(
σ⃗ 0
0 σ⃗

)
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Helicity and Chirality

From Dirac to Weyl: Setup (Chiral Rep.)

Start from the momentum-space Dirac equation:

(/p−m)u(p) = 0, /p = γµpµ

Chiral (Weyl) representation:

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−1 0
0 1

)
Spinor decomposition and Pauli 4-vectors:

u(p) =

(
ψL
ψR

)
, σµ = (1, σ⃗), σ̄µ = (1,−σ⃗).

With metric diag(+,−,−,−) and pµ = (E,−p⃗):

p · σ = E 1− p⃗ · σ⃗, p · σ̄ = E 1+ p⃗ · σ⃗.
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Helicity and Chirality

Block Form of /p and (/p−m)

Using the chiral γµ:

/p = pµγ
µ =

(
0 p · σ

p · σ̄ 0

)
Therefore,

(/p−m) =

(
−m p · σ
p · σ̄ −m

)
.

Acting on u(p) =
(
ψL
ψR

)
:(

−m p · σ
p · σ̄ −m

)(
ψL
ψR

)
=

(
−mψL + (p · σ)ψR
(p · σ̄)ψL −mψR

)
=

(
0
0

)
.
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Helicity and Chirality

Extracting the Two Weyl Equations

From upper two components:

(p · σ)ψR = mψL.

From lower two components:

(p · σ̄)ψL = mψR.

Massless limit (m = 0) decouples the chiralities:

(p · σ)ψR = 0, (p · σ̄)ψL = 0,

i.e. two independent Weyl equations.
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Helicity and Chirality

From Weyl Equations to Helicity Eigenstates

Massless Weyl equations:

(p · σ)ψR = 0, (p · σ̄)ψL = 0.

For p⃗ = |p⃗| ˆ⃗p, E = |p⃗|:

(E1− p⃗ · σ⃗)ψR = 0 =⇒ (σ⃗ · ˆ⃗p)ψR = +ψR,

(E1+ p⃗ · σ⃗)ψL = 0 =⇒ (σ⃗ · ˆ⃗p)ψL = −ψL.

Thus, ψR and ψL are helicity eigenstates with eigenvalues +1 and −1.

Interpreting σ⃗/2 as spin for spin-12 :

ψR : h = +1
2 (spin parallel to p⃗), ψL : h = −1

2 (spin anti-parallel).
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Helicity and Chirality

Chirality: Massless vs Massive Fermions

Massless case (m = 0): chiralities decouple

pµσ
µψR = 0, pµσ̄

µψL = 0,

so chirality is conserved and

chirality = helicity.

Massive case (m ̸= 0): the mass term couples chiralities

pµσ
µψR = mψL, pµσ̄

µψL = mψR,

so chirality is not conserved.
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Helicity and Chirality

Left-handed Neutrinos in the Standard Model

Experiment: weak interactions violate parity maximally.

Wu experiment (1957): beta decay asymmetry.
Goldhaber experiment (1958): neutrinos are left-helical.

Theory: weak force is an SU(2)L gauge interaction.

Lℓ =

(
νℓ
ℓ−

)
L

, ℓ = e, µ, τ

Only left-chiral doublets couple to W±, Z bosons.

No right-handed neutrino field exists in the minimal SM.

⇒ In the SM: only left-handed neutrinos exist.
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Helicity and Chirality

Summary: Why Chirality Matters

Helicity: intuitive picture — spin along momentum.

Chirality: fundamental in the Standard Model.

Electroweak gauge structure:

Left-chiral fermions form SU(2)L doublets:

Lℓ =

(
νℓ
ℓ−

)
L

, Qq =

(
u
d

)
L

Right-chiral fermions are SU(2)L singlets:

eR, uR, dR (no νR in SM)

This chiral asymmetry explains:

Maximal parity violation in weak interactions.
Different coupling strengths of left- vs. right-handed fields.
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