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Gaussian 적분

실수대칭양의정부호 (real symmetric positive-definite)
행렬 K에 대하여 다음 적분을 고려한다.
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여기에서 detK = detOTKO =
∏

i di를 이용하였다.

Jij 계산

d차원 격자점의 벡터를 x = (x1, x2, . . . , xd)라고 쓰고,
Dirac의 bracket notation을 이용하여 K를 다음과 같이 쓴
다.
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단, xi = 1, 2, . . . , L이고, 편의상 L은 홀수라고 하자.

Translational invariance를 이용하기 위해 Fourier 변환
된 state vector |k〉을 다음과 같이 도입하자.
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위에서 ki = 2πni/L이고 ni = −(L− 1)/2, . . . , (L− 1)/2

인 정수이다 (periodic boundary conditions).
L = K/(2K)라 하자. L의 성질만 분석하면 충분하다.

|k〉은 L의 eigenstate임을 다음과 같이 확인할 수 있다.
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이로부터 p > d이어야 L (즉, K)은 양의 정부호 행렬이
됨을 알 수 있다. 따라서,
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N → ∞이면위합은아래의적분이된다 (Riemann 적분).

Id(r) =

∫ π

−π

ddk

(2π)d
eik·r

p+
∑d

j=1 cos(kj)
,

L−1
x,y = Id(r) + o(1) (r ≡ x− y).
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적분을 하자. 편의상 x = r1은 자연수라고 두자.

I1(x) =
1

2π

∫ π

−π

eikxdk

A+ cos k =
1

2πi

∮
C

2zxdz

z2 + 2Az + 1
. (1)

위에서 C는 원점이 중심이고 반지름이 1인 복소평면의 원
을의미한다. A = coshκ > 1라고하면 (κ > 0), z = −e−κ

에서 simple pole을 가지므로, (−eκ는 C 바깥)
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sinhκ .

식 (1)에서 k 7→ −k로 치환하면 I1(x) = I1(−x)이므로
임의의 정수 x에 대하여 I1(x) = I1(|x|) 가 된다.

이제 d차원 적분을 고려하자. r의 성분중, 가장 큰 절대
값을갖는성분을 x라고하고, 이 성분에수직인성분을 r⊥

이라고 하자. 그러면 Id는 다음과 같이 쓸 수 있다.
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p−d+1 := cosh(
√
dκ0)라고하면, |r|2 = |r⊥|2+x2 ≤ x2d

이므로, κ|x| > κ0|r|, κ > κ0이다. 따라서, |Id(r)| ≤
e−κ0|r|/ sinhκ0 가 성립되어 Jx,y는 |x − y|가 큰 경우에
(최소한) 지수함수적으로 감소함을 알 수 있다.
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∆(r) 계산
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dte−yt = 1/y를이용하고, k의각성분에대한 gaus-

sian 적분을 하면, ∆(r)은 다음과 같이 된다.
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위에서 t = rex/(2αµ)로 치환하였고 (y ≡ µr/α, ν ≡ d
2 −

1), e−νx = cosh(νx) − sinh(νx)이고 sinh을 포함한 적분
은 0이 됨을 이용하였다. 또한, Kν(y)는 modified Bessel
function of the second kind로서

Kν(y) =

∫ ∞
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cosh(νt) exp(−y cosh t)dt = K−ν(y)

를 만족한다. y � 1에 대하여 Kν(y) ∼ e−yy−1/2이고,
y � 1인 경우, Kν(y) ∼ y−|ν|이므로,
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r−(d−2), µr � 1 and d ≥ 2,

const, µr � 1 and d < 2.


