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ofCrr - E 3 E HAHEHE (2002)

“There are known knowns; there are things we know

we know. We also know there are known unknowns;

that is to say, we know there are some things we do

not know. But there are also unknown unknowns—
the ones we don’t know we don’t know.”

- Donald Rumsfeld (2002)
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Winter School

KIAS-APCTP Winter School on Statistical Physics

= 22nd KIAS-APCTP Winter School on Statistical Physics 2025 (Homepage, lecture note)

= 21st KIAS-APCTP Winter School on Statistical Physics 2024 (Homepage, lecture note)

= 20th KIAS-APCTP Winter School on Statistical Physics 2023 (Homepage, lecture video)

= 19th KIAS-APCTP Winter School on Statistical Physics 2022 (Homepage, lecture video)

= 18th KIAS-APCTP Winter School on Statistical Physics 2021 (Homepage, poster)

= 17th KIAS-APCTP Winter School on Statistical Physics 2020 (Homepage, poster)

= 16th KIAS-APCTP Winter School on Statistical Physics 2019 (Homepage)

= 15th KIAS-APCTP Winter School on Statistical Physics 2018 ( Homepage, poster )
= 14th KIAS-APCTP Winter School on Statistical Physics 2017 ( Homepage, poster )

= 13rd KIAS-APCTP Winter School on Statistical Physics 2016 ( Homepage, poster )

= 12nd KIAS-APCTP Winter School on Statistical Physics 2015 ( Homepage, poster )

= 11st KIAS-APCTP Winter School on Statistical Physics 2014 ( Homepage, poster )

= 10th KIAS-APCTP Winter School on Statistical Physics 2013 ( Homepage, poster )

= 9th KIAS-APCTP Winter School on Statistical Physics 2012 ( poster)



The 16th KIAS-APCTP Winter School on Statistical Physics

January 14 (Mon), 2019 ~ January 18 (Fri), 2019

=
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Program

Announcements* **
Travel Information
Poster/Photo

Lecture notes

tical Phvsics

ena & Renormalization Group for Millennials

LJAS

Critical

Venue | Period
The Ocean Resort, Yeosu, Korea | January 14-18, 2019




The 19th KIAS-APCTP Winter School on Statistical Ph}(th

POSTECH International Center Auditorium & Online (Zoom) January 10~14, 2022

KIES?—?" apctp KeS

SARRYy

Home > Home

Overview

Statistical mechanics provides a powerful tool for understanding macroscopic systems on the basis of microscopic laws
governing the dynamics of their constituents. Its ever-increasing use is not limited to physical sciences but extends to
as diverse subjects as biological and social sciences. This annual event is intended to provide graduate students and
early-career scientists in statistical physics and related disciplines with the conceptual framework and analytical tools
for advanced studies in statistical physics and interdisciplinary research.

Topics

Thematic focus of the 19th School is the Phase Transitions and Critical Phenomena. 15 hours of lectures by three
invited lecturers will be devoted to learn the fundamental concepts and the practical tools on the subject. The
attending students will undertake a hands-on group project on the subjects, in order to make the School more
engaging. Three lecture series (5 hours each) will be given under the tentative topics:

- Fundamentals of Phase Transitions and Critical Phenomena (HP)

- Renormalization Group 101 (JDN)

- Numerical Methods to Study Critical Phenomena (DHK)
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- EQ spatial patterns

T={ ordered (ferro) phase

* Key question: What is “phase” ?
Zoom out (coarsening) for scale transformation (RGT) mmm) approaching a fixed point

=) fractal dimensions
* How to determine fractal dimensions? [a set of fractal dimensions]
All) = Z Oa (O 4: local observable like S;, SiSj, ...; w(f): window of linear size /)
w(f)

~ 0 for large ¢ (da: fractal dimension of object ‘A’)

- no typical scale]
P(sa) ~sda M08

self-similar]
* |s it useful to know fractal dimensions?
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square—-cube law
(or cube-square law)

It was first described in 1638 by Galileo Galilei in his Two New Sciences as the
n the ratio of their surfaces".
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Adolphe Quetelet

Lambert Adolphe Jacques Quetelet

(22 February 1796 — 17 February 1874)1 was
a Belgian-French astronomer, mathematician,
statistician, and sociologist

He also founded the science

of anthropometry and developed the body
mass index (BMI) scale, originally called the
Quetelet Index.

mass
BMI — ke DA o3

height_2  height. 2

Corpulence Index (ClI) CI = mass
or Ponderal Index (PI) height?
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SCIENTIFIC REP{%;}RTS

Human bipedalism and body-mass
index

Su DoYi?, Jae Dong Noh?3, Petter Minnhagen*, Mi-Young Song®, Tae-Soo Chon®’ &
Beom Jun Kim?®

Received: 15 April 2016 Body-mass index, abbreviated as BMI and given by M/H? with the mass M and the height H, has been

Accepted: 9 May 2017 widely used as a useful proxy to measure a general health status of a human individual. We generalise

Published online: 16 June 2017 BMI in the form of M/HP and pursue to answer the question of the value of p for populations of animal
species including human. We compare values of p for several different datasets for human populations
with the ones obtained for other animal populations of fish, whales, and land mammals. All animal
populations but humans analyzed in our work are shown to have p= 3 unanimously. In contrast,
human populations are different: As young infants grow to become toddlers and keep growing, the
sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit
significantly larger value of p than two, while children between one and five years old show p~ 2,
sharply different from other animal species. The observation implies the importance of the upright
posture of human individuals. We also propose a simple mechanical model for a human body and
suggest that standing and walking upright should put a clear division between bipedal human (p =~ 2)
and other animals (p = 3).
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Figure 1. The mass M versus the linear body size H of animals: (a) Pale chub (Zacco platypus) (N=3 163) and
(b) Korean chub (Zacco koreanus) (N=997) are for fishes, (c) Fin (N=29) and (d) Sei (N =27) are for whales,
and (e) and (f) are for land mammals, respectively. The data file used for (e) contains all 325 lines of the mass,
the body length, and the shoulder height information of many different species of land mammals, while the file
used for (f) contains 205 lines of the mass and the body length of species in order Rodentia. In (e) two different
ways to measure the linear size, the shoulder height (upper points) and the body length (lower points) are
displayed. In all datasets in (a)-(f), we observe that the Benn index p ~ 3, with (d) an exception, probably due to
insufficient data size for Sei whales.
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Figure 2. The mass M and the height H for humans: (a) and (b) for the data from Sweden, (c) from Korea,

and (d) from WHO (see text for details of the used datasets). The linear regression for the entire data in (a) for
Swedish children gives the Benn index p=2.1. In (b), we divide all Swedish data into two groups depending

on whether the child is younger or older than one year after birth. The left part of the data for children younger
than one year old has p ~ 2.8 while children older than one year (the right part of the data) has p~1.8. (c) Data
for Korean children drawn in the same way as for (b), giving us p ~2.5 and p~ 1.9 depending on the age group
(younger and older than one year, respectively). (d) WHO data displayed in the same way. Again, we see the
change of p value at around one year after birth. Although all data points in each dataset are used to perform the
linear regressions in (a)-(c), we use only 10000 randomly chosen points in each scatter plot for (a)-(c), only for
convenience of visibility.
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Figure 3. (a) We assume that the human body is a uniform cylinder with the radius R and the height H. It is
supported on a rigid substrate (a representation of human feet). Suppose that the human body cylinder is tilted
forward as shown in (b) by a small angle 6. To achieve the stability of the tilted posture, two competitive torques,
one from the skeletal muscle force F,, and the other from the gravitational force F,, must be balanced. The
gravitational torque is written as T, = F,(x/2) with x/2 being the shift of the horizontal position of the center of
mass (CM). We assume that F,, depends on the extension y of muscles as shown in (b). For the tilting angle 6,
we getx = H sinfand y = R sinf = xR/H.



* The total weight of the body is written as F,=mpR’Hg with the mass density p and the gravitational accelera-
tion g. As seen in Fig. 3(b), suppose that the body cylinder of a human is tilted forward in such a way that the top
of the body is now shifted horizontally by the distance x. The gravitational torque, with the contact point of the
body axis and the ground [see Fig. 3(b)] taken as the origin, reads

x
s~y )
since the center of mass (CM) is horizontally shifted by the distance x/2. Upon tilting, the body cylinder is lifted
from the substrate, which results in the extension y of the muscle as displayed in Fig. 3(b). The force F,, caused by
the extension of the muscle then applies the torque

T, = E,cR 2)

with ¢ being a constant of O(1). Skeletal muscles are collections of long muscle fibers, which are composed of
repeating sections of the so-called sarcomeres. We expect that the total number of muscle fibers is proportional
to R* and that the number of repeating building blocks (sarcomeres) along the muscle fiber must be proportional
to H". Accordingly, we believe that the muscle force F,, which can be provided by the human body cylinder can
roughly be written as

E, = R*Hf(y), (3)

where f(y) is independent of body size but depends only on the extension y of the muscle. We note that in the
study of jump heights of various animal species'® the available energy produced by a body has been argued to be
proportional to the body mass, i.e., R*H, as in Eq. (3). The stability requirement for the tilted posture is given by
the torque balance condition T, = T,,, which yields (7/2) pR*Hgx = cR’Hf(y), and we obtain x ~ Rf(y). We then use
a general form f(y) ~ y” with an unspecified parameter b, and get x ~ Ry*. The final step is to use x = H sinf and
y = Rsinfl = Rx/H as shown in Fig. 3, which gives us x ~ R(Rx/H)"®. In order to make this equation
self-consistent, we now find b=1, and we finally get

H ~ R?, (4)

yielding the Benn index p = 2 from M ~ R*H ~ H? for upright human body. Although our model results in p=2 in
accord with observations, we still believe that the model demands improvement to be more realistic. For example,
the upper body length may scale differently than the total height H, which could be related with different values
of p for different human population groups.



DIAGNOSIS: ANTHROPOMETRIC COMPONENT

Anthropometric Screening & Classification

Measure BMI
Clinically examine and confirm
excess adiposity

Class WHO BMI Classification

Overweight® 25.0 - 29.9 kg/m?

Class | Obesity* 30.0 - 34.9 kg/m?

Class Il Obesity >35.0 - 39.9 kg/m?

Class Ill Obesity 240.0 kg/m?

2n the Asia-Pacific region, the BMI threshold for obesity
is generally considered to be 225 kg/m? and for overweight
23 kg/m? to 24.9 kg/m?. See text for additional information.

-+

Assess Body Composition
Using, for example, bioelectrical

impedance analysis or DXA if
clinically needed and available

Measure Waist Circumference

for BMI <35.0 kg/m?, and

Calculate Waist-to-Height Ratio
for classifying abdominal obesity and cardiometabolic risk

International Diabetes Federation
Waist Circumference Criteria
for Cardiometabolic RiskP

Region/Ethnic Sex Waist
Background® Circumference®
Europe, Sub-Saharan Male 284 cm
Africa, and Middle East Female ~800m
Male 2102cm
United States & Canada
Female >88cm
Asia, South & Male 290 cm
Central America Female >80 cm

b Darbandi Met al. Discriminatory Capacity of Anthropometric
Indices for Cardiovascular Disease in Adults: A Systematic

Review and Meta-Analysis. Prev Chronic Dis. 2020 Oct 22;17:E131.

©See text for additional information.

d|ncreasing waist circumference correlates with increased
severity of obesity.

Abbreviations: BMI, body mass index; DXA, dual-energy X-ray absorptiometry; WHO, World Health Organization

Algorithm Figure 3 - Diagnosis: Anthropometric Component
COPYRIGHT © 2025 AACE. May not be reproduced in any form with
Visit doi.org/10.1016/j.eprac.2025.07.017 to request copyright permis:

National Institute for Health
and Care Excellence, and
World Health Organization

Waist-to-Height Ratio

205
20.5
205
205
205
20.5

Obesity: identification, assessment
and management. NICE Guideline,
No. 189.

London: National Institute for Health

and Care Excellence (NICE); 2023 Jul
26. Recommendations 1.2.11and 1.212

Endocrine Practice

Volume 31, Issue 11, November 2025, Pages 1351-1394
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Adolphe Quetelet

Lambert Adolphe Jacques Quetelet

(22 February 1796 — 17 February 1874)1 was
a Belgian-French astronomer, mathematician,
statistician, and sociologist

He also founded the science

of anthropometry and developed the body
mass index (BMI) scale, originally called the
Quetelet Index.

mass
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height_2  height. 2

Corpulence Index (ClI) CI = mass
or Ponderal Index (PI) height?
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PHYSIOLOGICAL REVIEWS

VoL. 27 OCTOBER, 1947 No. 4

BODY SIZE AND METABOLIC RATE

MAX KLEIBER
Division of Animal Husbandry, College of Agriculture, University of California, Davis

CORRELATION BETWEEN BODY SIZE AND METABOLIC RATE. Giinther (1944)
introduces a recent review on body weight and metabolic rate with a motto which
starts as follows:

“It is believed that far greater progress will be made by discarding all thoughts
of a uniformity in heat loss and emphasizing the non-uniformity in heat
production. . . .”

The sentence is a citation from Benedict’s book, Vital Energetics (1938, p. 194).

It is rather difficult to understand how forgetting all thoughts of uniformity
and emphasizing non-uniformity can stimulate a comparison of metabolic rates
of large and small animals. Any comparison presupposes a common basis, and
if I were convinced of the “futility of attempts to discover a unifying principle in
metabolism” (Benedict, l.c., p. 178) I should not attempt to write a review on the
relation of body size and metabolic rate.

The reader can be expected to spend time on this review only when he can be
convinced that body size and metabolic rate are actually related. That these
two variables are related is in fact common knowledge.

Does a horse produce more heat per day than a rat or do some rats produce
PP I B e A R - I P . R . U (Y I P M .
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Lorenz eqs
_5 v=2.05+.01

log, C(1)

—25

| | |
0 5 10 15

log, (1/1p) (1, arbitrary)

Figure 11.5.3 Grassberger and Procaccia (1983), p.196




Lewis Fry Richardson

(1961) "The Problem of Contiguity: An
Appendix to Statistics of Deadly Quarrels"
is a significant 1961 article by Lewis Fry

Richardson, published in the General
Systems Yearbook
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https://en.wikipedia.org/wiki/Coastline_paradox

How Long Is the Coast of Britain?

Benoit Mandelbrot (1967)

Coastline at scale [ = 150.0km Coastline length 2610 kn

10

seale [ km)

E 610

Cloastline length on

1% 100

3w 10¢

T
¥

T T
! 10° ! 10
Coarse grainscale T km)

The smaller the ruler, the longer the resulting coastline. It might be supposed that these values would converge to a number representing
the coastline's true length, but Richardson demonstrated that this is not so: the measured length of coastlines, and other natural features,
increases without limit as the unit of measurement is made smaller.l'”) This is known as the Richardson effect!'®]


https://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain%3F_Statistical_Self-Similarity_and_Fractional_Dimension
https://en.wikipedia.org/wiki/Benoit_Mandelbrot

Benoit Mandelbrot (1967)

Science

Volume 156,
Issue 3775
May 1967

How Long Is the Coast of Britain?
Statistical Self-Similarity and Fractional Dimension

Abstract. Geographical curves are so involved in their detail that their lengths
are often infinite or, rather, undefinable. However, many are statistically “self-
similar,” meaning that each portion can be considered a reduced-scale image of
the whole. In that case, the degree of complication can be described by a quantity
D that has many properties of a “dimension,” though it is fractional; that is, it
exceeds the value unity associated with the ordinary, rectifiable, curves.

Seacoast shapes are examples of high-
ly involved curves such that each of
their portion can—in a statistical sense
—be considered a reduced-scale image
of the whole. This property will be re-
ferred to as “statistical self-similarity.”
To speak of a length for such figures
is usually meaningless. Similarly (1),
“the left bank of the Vistula, when
measured with increased precision,
would furnish lengths ten, hundred or
even thousand times as great as the
length read off the school map.” More
generally, geographical curves can be

4.0

‘c% N Coasy

considered as superpositions of features
of widely scattered characteristic size;
as ever finer features are taken account
of, the measured total length increases,
and there is usually no clearcut gap be-
tween the realm of geography and de-
tails with which geography need not be
concerned.

Quantities other than length are thus
needed to discriminate between vari-
ous degrees of complication for a geo-
graphical curve. When a curve is self-
similar, it is characterized by an expo-
nent of similarity, D, which possesses

o
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Fig. 1. Richardson’s data concerning measurements of geographical curves by way of
polygons which have equal sides and have their corners on the curve. For the circle,
the total length tends to a limit as the side goes to zero. In all other cases, it increases
as the side becomes shorter, the slope of the doubly logarithmic graph being in absolute
value equal to D-1. (Reproduced from 2, Fig. 17, by permission.)
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great usefulness.

Self-similarity methods are a potent
tool in the study of chance phenomena,
including geostatistics, as well as eco-
nomics (3) and physics (4). In fact,
many noises have dimensions D con-
tained between 0 and 1, so that the
scientist ought to consider dimension
as a continuous quantity ranging from
0 to infinity.

Returning to the claim made in the
first paragraph, let us review the meth-
ods used when attempting to measurg
the length of a seacoast. Since a geog-
rapher is unconcerned with minute de-
tails, he may choose a positive scale G
as a lower limit to the length of geo-
graphically meaningful features. Then,
to evaluate the length of a coast be-
tween two of its points 4 and B, he
may draw the shortest inland curve
joining A and B while staying within
a distance G of the sea. Alternatively,
he may draw the shortest line made
of straight segments of length at most
G, whose vertices are points of the
coast which include 4 and B. There are
many other possible definitions. In prac-
tice, of course, one must be content
with approximations to shortest paths.
We shall suppose that measurements
are made by walking a pair of dividers
along a map so as to count the number
of equal sides of length G of an open
polygon whose corners lie on the curve.
If G is small enough, it does not matter
whether one starts from 4 or B. Thus,
one obtains an estimate of the length
to be called L(G).

Unfortunately, geographers will dis-
agree about the value of G, while L(G)
depends greatly upon G. Consequently,
it is necessary to know L(G) for several
values of G. Better still, it would be
nice to have an analytic formula link-
ing L(G) with G. Such a formula, of
an entirely empirical character, was pro-
posed by Lewis F. Richardson (2) but
unfortunately it attracted no attention.
The formula is L(G) = M G2, where
M is a positive constant and D is a
constant at least equal to unity. This
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doi:10.1126/science.27/6.5309.122

A General Model for the Origin of Allometric
Scaling Laws in Biology

Geoffrey B. West, James H. Brown,* Brian J. Enquist

Allometric scaling relations, including the 3/4 power law for metabolic rates, are char-
acteristic of all organisms and are here derived from a general model that describes how
essential materials are transported through space-filling fractal networks of branching
tubes. The model assumes that the energy dissipated is minimized and that the terminal
tubes do not vary with body size. It provides a complete analysis of scaling relations for
mammalian circulatory systems that are in agreement with data. More generally, the
model predicts structural and functional properties of vertebrate cardiovascular and
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution

networks.

Biological diversity is largely a matter of
body size, which varies over 21 orders of
magnitude (1). Size affects rates of all bio-
logical structures and processes from cellu-
lar metabolism to population dynamics (2,
3). The dependence of a biological variable
Y on body mass M is typically characterized
by an allometric scaling law of the form

Y = YoM (1)

where b is the scaling exponent and Y, a

underlies these laws: Living things are sus-
tained by the transport of materials
through linear networks that branch to
supply all parts of the organism. We de-
velop a quantitative model that explains
the origin and ubiquity of quarter-power
scaling; it predicts the essential features of
transport systems, such as mammalian
blood vessels and bronchial trees, plant
vascular systems, and insect tracheal
tubes. It is based on three unifying princi-
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Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,

C D _ where k specifies the order of the
— A/pk level, beginning with the aorta
k > (k = 0) and ending with the capil-
— ;" lary (k = N); and (D) parameters of
O —» & a typical tube at the kth level.
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Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k = 0) and ending with the capil-
lary (k = N); and (D) parameters of
a typical tube at the kth level.

aln(M/M,)

Inn

N, =n" « M¢

k



Total volume of fluid (“blood volume”)

N N nvB2) N+ _ 1
Vi, = kE NV, = kE mrint = (nyB) N
=0 =0

(n,YBZ)—l —1 n VC
Vo A7
Vp ~ 1 > = 1 — XM
—nyp —nypB 2 In(M/M.)
M (V,BZ)NN 1 Capillaries are invariant units. Inn
lInn . ; 3
a= - — - § =n E — —
In(yB%) y=n3s,f=nza=7
* Space-filling fractal * Area-preserving branching
3 3
4 (b 4 (ks 2 _ 2
3" (E) Nie ~ §7T( 5| Nie+a Mre = N4
1
Lie+1 Nis1) 3 _1 _ Tk+1 _1
= ~ =n 3 — =N 2
Yk I ( N, Br T



Fig. 3. Illustration of the quantity N, /; at level k (a) and level k& + 1 (b). Here k = 4. The
quantity N, /; is the sum of volumes of all circles (spheres in three dimensions) at level k.
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Growth, innovation, scaling, and the pace

of life in cities

Y(t) = YoN(t)".
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Humanity has just crossed a major landmark in its history with the
majority of people now living in cities. Cities have long been
known to be society’s predominant engine of innovation and
wealth creation, yet they are also its main source of crime, pollu-
tion, and disease. The inexorable trend toward urbanization world-
wide presents an urgent challenge for developing a predictive,
quantitative theory of urban organization and sustainable devel-
opment. Here we present empirical evidence indicating that the
processes relating urbanization to economic development and
knowledge creation are very general, being shared by all cities
belonging to the same urban system and sustained across different
nations and times. Many diverse properties of cities from patent
production and personal income to electrical cable length are
shown to be power law functions of population size with scaling
exponents, B, that fall into distinct universality classes. Quantities
reflecting wealth creation and innovation have 8 ~1.2 >1 (increas-
ing returns), whereas those accounting for infrastructure display
~0.8 <1 (economies of scale). We predict that the pace of social life
in the city increases with population size, in quantitative agree-
ment with data, and we discuss how cities are similar to, and differ
from, biological organisms, for which B<1. Finally, we explore
possible consequences of these scaling relations by deriving
growth equations, which quantify the dramatic difference be-
tween growth fueled by innovation versus that driven by econo-
mies of scale. This difference suggests that, as population grows,
major innovation cycles must be generated at a continually accel-
erating rate to sustain growth and avoid stagnation or collapse.

population | sustainability | urban studies | increasing returns |
economics of scale

The increasing concentration of people in cities presents both
opportunities and challenges (9) toward future scenarios of
sustainable development. On the one hand, cities make possible
economies of scale in infrastructure (9) and facilitate the opti-
mized delivery of social services, such as education, health care,
and efficient governance. Other impacts, however, arise because
of human adaptation to urban living (9, 10-14). They can be
direct, resulting from obvious changes in land use (3) [e.g., urban
heat island effects (15, 16) and increased green house gas
emissions (17)] or indirect, following from changes in consump-
tion (18) and human behavior (10-14), already emphasized in
classical work by Simmel and Wirth in urban sociology (11, 12)
and by Milgram in psychology (13). An important result of
urbanization is also an increased division of labor (10) and the
growth of occupations geared toward innovation and wealth
creation (19-22). The features common to this set of impacts are
that they are open-ended and involve permanent adaptation,
whereas their environmental implications are ambivalent, ag-
gravating stresses on natural environments in some cases and
creating the conditions for sustainable solutions in others (9).

These unfolding complex demographic and social trends make
it clear that the quantitative understanding of human social
organization and dynamics in cities (7, 9) is a major piece of the
puzzle toward navigating successfully a transition to sustainabil-
ity. However, despite much historical evidence (19, 20) that cities
are the principal engines of innovation and economic growth, a
quantitative, predictive theory for understanding their dynamics
and organization (23, 24) and estimating their future trajectory
and stability remains elusive. Significant obstacles toward this
goal are the immense diversity of human activity and organiza-
tion and an enormous range of geographic factors. Nevertheless,



Table 1. Scaling exponents for urban indicators vs. city size

Y(t) = YoN(t)".

Y B 95% CI Adj-R?>  Observations Country-year
New patents 1.27  [1.25,1.29] 0.72 331 U.S. 2001
Inventors 1.25 [1.22,1.27] 0.76 331 U.S. 2001
Private R&D employment 1.34 [1.29,1.39] 0.92 266 U.S. 2002
"Supercreative” employment 1.15  [1.11,1.18] 0.89 287 U.S. 2003
R&D establishments 1.19 [1.14,1.22] 0.77 287 U.s. 1997

R&D employment 1.26  [1.18,1.43] 0.93 295 China 2002
Total wages 112 [1.09,1.13] 0.96 361 U.S. 2002
Total bank deposits 1.08 [1.03,1.11] 0.91 267 U.S. 1996

GDP 1.15 [1.06,1.23] 0.96 295 China 2002
GDP 1.26  [1.09,1.46] 0.64 196 EU 1999-2003
GDP 1.13  [1.03,1.23] 0.94 37 Germany 2003
Total electrical consumption 1.07 [1.03,1.11] 0.88 392 Germany 2002
New AIDS cases 1.23  [1.18,1.29] 0.76 93 U.S. 2002-2003
Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003
Total housing 1.00 [0.99,1.01] 0.99 316 U.S. 1990
Total employment 1.01 [0.99,1.02] 0.98 331 U.S. 2001
Household electrical consumption 1.00 [0.94,1.06] 0.88 377 Germany 2002
Household electrical consumption 1.05 [0.89,1.22] 0.91 295 China 2002
Household water consumption 1.01 [0.89,1.11] 0.96 295 China 2002
Gasoline stations 0.77 [0.74,0.81] 0.93 318 U.S. 2001
Gasoline sales 0.79 [0.73,0.80] 0.94 318 U.S. 2001
Length of electrical cables 0.87 [0.82,0.92] 0.75 380 Germany 2002
Road surface 0.83 [0.74,0.92] 0.87 29 Germany 2002

Data sources are shown in S/ Text. Cl, confidence interval; Adj-R?, adjusted R?; GDP, gross domestic product.
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Best-fit scaling relations are shown as solid lines.
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The Origins of Scaling in Cities

Luis M. A. Bettencourt

Despite the increasing importance of cities in human societies, our ability to understand them
scientifically and manage them in practice has remained limited. The greatest difficulties to
any scientific approach to cities have resulted from their many interdependent facets, as social,
economic, infrastructural, and spatial complex systems that exist in similar but changing forms
over a huge range of scales. Here, | show how all cities may evolve according to a small set

of basic principles that operate locally. A theoretical framework was developed to predict the
average social, spatial, and infrastructural properties of cities as a set of scaling relations that
apply to all urban systems. Confirmation of these predictions was observed for thousands of
cities worldwide, from many urban systems at different levels of development. Measures of urban

efficiency, capturing the balance between socioeconomic outputs and infrastructural costs,
were shown to be independent of city size and might be a useful means to evaluate urban

planning strategies.

ities exist, in recognizable but changing
‘ forms, over an enormous range of scales

(), from small towns with just a few
people to the gigantic metropolis of Tokyo, with
more than 35 million inhabitants. Many parallels
have been suggested between cities and other
complex systems, from river networks (2) and
biological organisms (3—6) to insect colonies
(1, 7) and ecosystems (8). The central flaw of all
these arguments is their emphasis on analogies of

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM
87501, USA.

E-mail: bettencourt@santafe.edu

form rather than function, which limit their ability
to help us understand and plan cities.

Recently, our increasing ability to collect and
share data on many aspects of urban life has
begun to supply us with better clues to the prop-
erties of cities, in terms of general statistical pat-
terns of land use, urban infrastructure, and rates
of socioeconomic activity (6, 9—13). These em-
pirical observations have been summarized across
several disciplines, from geography to econom-
ics, in terms of how different urban quantities
(such as the area of roads or wages paid) depend
on city size, usually measured by its popula-
tion, N.

The evidence from many empirical studies
over the past 40 years points to there being no
special size to cities, so that most urban prop-
erties, ¥, vary continuously with population size
and are well described mathematically on aver-
age by power-law scaling relations of the form
Y = YoNB, where ¥, and B are constants in M.
The surprise, perhaps, is that cities of different
sizes do have very different properties. Specif-
ically, one generally observes that rates of so-
cial quantities (such as wages or new inventions)
increase per capita with city size (11, 12) (super-
linear scaling,f =148 > 1, with & = 0.15),
whereas the volume occupied by urban infra-
structure per capita (roads, cables, etc.) decreases
(sublinear scaling, p = 1 — 8 < 1) (Fig. 1). Thus,
these data summarize familiar expectations that
larger cities are not only more expensive and
congested, but also more exciting and creative
when compared to small towns.

These empirical results also suggest that, de-
spite their apparent complexity, cities may actually
be quite simple: Their average global properties
may be set by just a few key parameters (/2, 13).
However, the origin of these observed scaling
relations and an explanation for the interdepen-
dences between spatial, infrastructural, and social
facets of the city have remained a mystery.

Here, I develop a unified and quantitative
framework to understand, at a theoretical level,
how cities operate and how these interdepen-
dencies arise. Consider first the simplest model
of a city with circumscribing land area 4 and
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Fig. 1. Scaling of urban infrastructure and socioeconomic output. (A)
Total lane miles (volume) of roads in U.S. metropolitan areas (MSAs) in 2006
(blue dots). Data for 415 urban areas were obtained from the Office of Highway
Policy Information from the Federal Highway Administration (14). Lines show
the best fit to a scaling relation Y(N) = YoNP(red), with B = 0.849 + 0.038
[95% confidence interval (Cl), R* = 0.65]; the theoretical prediction, p = 5/6
(yellow); and linear scaling B = 1 (black). (B) Gross metropolitan product of
MSAs in 2006 (green dots). Data obtained for 363 MSAs from U.S. Bureau of
Economic Analysis (14). Lines describe best fit (red) to data, B = 1.126 + 0.023
(95% CI, R* = 0.96); the theoretical prediction, B = 7/6 (yellow); and pro-
portional scaling, B = 1 (black). The two best-fit parameters in each scaling
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relation were estimated by means of ordinary least-squares minimization to the
linear relation between logarithmically transformed variables (14). The inset
shows the estimate of G for 313 U.S. MSAs and the conservation law ZE—,‘{, =
(R? = 0.003). G is measured as the product of gross domestic product and
road volume, both per capita. As predicted by the theory, observed values of G
for different cities cluster around its most likely value (mode, yellow line),
which gives an estimate of the optimum G*, and are bounded by the max-
imum G,,,, ~ 8G*(green line); see also Fig. 2B. Several metropolitan areas,
such as Bridgeport, Connecticut (green circle); Riverside, California (yellow circle);
or Brownsville, Texas (red circle), are outliers, suggesting that they are suboptimal
in terms of their transportation efficiency or amount of social mixing.



Table 1. Urban indicators and their scaling relations. Columns show measured exponent ranges
(see table S3 for details). Also shown are predicted values for D = 2, H = 1 (the simplest theoretical
expectation) and for general D, H. Agglomeration effects vanish as H — 0 (14). The larger range for the
observed land-area exponent is likely the result of different definitions of the city in space and distinct
measurement types. See table S3 and supplementary text for specific values of observed exponents,
discussion, and additional data sources.

. . Model Model
Urban scaling relations Observed exponent range O=2H=1) D, H
Land area [0.56,1.04] o=3 o=52y
A = alNa
Network volume [0.74,0.92] v=>2 v=1-3§
A, = AgNV
Network length [0.55,0.78] A=32 A=a
L, = LoN*
- i §=1 § =M
Interactions per capita [0.00,0.25] 6 DD + H)
1= 1,8
Socioeconomic rates [1.01,1.33] B=: B=1+5
Y = Y NP ?
Network power [1.05,1.17] ®=g wo=1+9
dissipation W = WyNe
o =1 o=1-0+39
Average land rents [0.46,0.52] L=3 L
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Scaling laws between population and facility densities
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When a new facility like a grocery store, a school, or a fire station
is planned, its location should ideally be determined by the neces-
sities of people who live nearby. Empirically, it has been found
that there exists a positive correlation between facility and pop-
ulation densities. In the present work, we investigate the ideal
relation between the population and the facility densities within
the framework of an economic mechanism governing microdynam-
ics. In previous studies based on the global optimization of facility
positions in minimizing the overall travel distance between peo-
ple and facilities, it was shown that the density of facility D and
that of population p should follow a simple power law D ~ p?/3,
In our empirical analysis, on the other hand, the power-law expo-
nent o in D ~ p% is not a fixed value but spreads in a broad range
depending on facility types. To explain this discrepancy in «, we
propose a model based on economic mechanisms that mimic the
competitive balance between the profit of the facilities and the
social opportunity cost for populations. Through our simple, micro-
scopically driven model, we show that commercial facilities driven
by the profit of the facilities have o = 1, whereas public facilities
driven by the social opportunity cost have « = 2/3. We simulate this
model to find the optimal positions of facilities on a real U.S. map
and show that the results are consistent with the empirical data.

optimal positioning | social opportunity cost | microdynamics model

between population and the number of facilities, looks natural,
but the empirical data do not support this argument. For exam-
ple, in the case of public service facilities, the exponents have been
observed to be 2/3. Although the exponent « = 2/3 is derived
analytically by minimizing the total travel distance between peo-
ple and facilities from the global optimization scheme (5, 10, 11),
the theory has failed to explain a = 1 in the same approach, and
only a phenomenological reformulation of the theory has been
tried (5).

Generally, commercial facilities like small stores have to attract
large numbers of people to make a profit. If they cannot do this,
such stores will need to close and move to a place with larger pop-
ulation. On the other hand, public facilities such as fire stations
and public schools need to be built in positions where they are as
close as possible to their clients, because the consumed travel time
or spatial distance yields the social opportunity cost by depriving
visitors of time for producing other products or services. For exam-
ple, public schools that exist in big cities require students who live
in nearby small towns or villages to commute for a long period of
time. To reduce the social opportunity cost caused by such a long-
distance commute, new schools should be built in places where
the population is sparse but not negligible. Therefore, one can
expect that the public facilities should be more evenly distributed
spatially than commercial ones. This inference is consistent with
the global optimization of facility positioning to minimize the total



Table 1. Summary of the exponents

US facility o (SE) R?
Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94
Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility o (SE) R?
Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90
* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of a in D ~ p* for various facilities in the US and
SK. The coefficient of determination R? is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are

the standard errors in the last digits.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density p for ambulatory
hospitals in the US. (B) D versus p for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around p ~ 100/km2. The
region above 100/km? of population density shows the exponent as ~1, and
the region below 100/km? shows 2/3. The population density 100/km? corre-
sponds to the cross-over point of the facility density 0.03/km?2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ~3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.
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Fig. 2. Distribution of public and private facilities. Density plot for ambulatory hospitals (A) and public schools (B) in the US. Voronoi cell diagram from model
simulation for commercial (C) and public facilities (D). Note that the spatial distribution in B and D for public facilities is more uniform than that in A and C for
commercial facilities.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density p for ambulatory
hospitals in the US. (B) D versus p for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around p ~ 100/km2. The
region above 100/km? of population density shows the exponent as ~1, and
the region below 100/km? shows 2/3. The population density 100/km? corre-
sponds to the cross-over point of the facility density 0.03/km?2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ~3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

10" 10' 10° 10°
population density p (in /km?)

B<—10°

LELELELLLL B R B R L B UL B L B L

I
= |
cC
102l 2/3

10°E s E
o | P =
> 3 3
= 3 3
& 4l
010 ¢
© ;
b - E
.6 10'6 [ assssud 2 asssd o o sasand s sesasd s aaasud s s s
O

10" 10" 10° 10°
population density p (in /km?)

Fig. 3. Simulation results. (A) Facility density D versus population density p
for the commercial facility. (B) D versus p for the public facility.



Table 1. Summary of the exponents

US facility o (SE) R?
Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94
Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility o (SE) R?
Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90
* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of a in D ~ p* for various facilities in the US and
SK. The coefficient of determination R? is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are

the standard errors in the last digits.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density p for ambulatory
hospitals in the US. (B) D versus p for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around p ~ 100/km2. The
region above 100/km? of population density shows the exponent as ~1, and
the region below 100/km? shows 2/3. The population density 100/km? corre-
sponds to the cross-over point of the facility density 0.03/km?2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ~3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.
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Table 1. Scaling exponents for urban indicators vs. city size

Y(t) = YoN(t)".

Y B 95% CI Adj-R?>  Observations Country-year
New patents 1.27  [1.25,1.29] 0.72 331 U.S. 2001
Inventors 1.25 [1.22,1.27] 0.76 331 U.S. 2001
Private R&D employment 1.34 [1.29,1.39] 0.92 266 U.S. 2002
"Supercreative” employment 1.15  [1.11,1.18] 0.89 287 U.S. 2003
R&D establishments 1.19 [1.14,1.22] 0.77 287 U.s. 1997

R&D employment 1.26  [1.18,1.43] 0.93 295 China 2002
Total wages 112 [1.09,1.13] 0.96 361 U.S. 2002
Total bank deposits 1.08 [1.03,1.11] 0.91 267 U.S. 1996

GDP 1.15 [1.06,1.23] 0.96 295 China 2002
GDP 1.26  [1.09,1.46] 0.64 196 EU 1999-2003
GDP 1.13  [1.03,1.23] 0.94 37 Germany 2003
Total electrical consumption 1.07 [1.03,1.11] 0.88 392 Germany 2002
New AIDS cases 1.23  [1.18,1.29] 0.76 93 U.S. 2002-2003
Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003
Total housing 1.00 [0.99,1.01] 0.99 316 U.S. 1990
Total employment 1.01 [0.99,1.02] 0.98 331 U.S. 2001
Household electrical consumption 1.00 [0.94,1.06] 0.88 377 Germany 2002
Household electrical consumption 1.05 [0.89,1.22] 0.91 295 China 2002
Household water consumption 1.01 [0.89,1.11] 0.96 295 China 2002
Gasoline stations 0.77 [0.74,0.81] 0.93 318 U.S. 2001
Gasoline sales 0.79 [0.73,0.80] 0.94 318 U.S. 2001
Length of electrical cables 0.87 [0.82,0.92] 0.75 380 Germany 2002
Road surface 0.83 [0.74,0.92] 0.87 29 Germany 2002

Data sources are shown in S/ Text. Cl, confidence interval; Adj-R?, adjusted R?; GDP, gross domestic product.



Table 1. Summary of the exponents

US facility o (SE) R?
Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94
Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility o (SE) R?
Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90
* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of a in D ~ p* for various facilities in the US and
SK. The coefficient of determination R? is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are

the standard errors in the last digits.
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density p for ambulatory
hospitals in the US. (B) D versus p for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around p ~ 100/km2. The
region above 100/km? of population density shows the exponent as ~1, and
the region below 100/km? shows 2/3. The population density 100/km? corre-
sponds to the cross-over point of the facility density 0.03/km?2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ~3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.
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between the spatial
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Fig. 1. Sampling of OD pairs and examples of the different detour indices Dgp,. (a) The
OD points are randomly selected on a circle with a given radius r,. For example, one
point at r; and another point at r, are not regarded as an OD pair. (b) The angular
distance 6, is defined as the included angle between two lines connecting the OD
points to the city center. (c)-(e) Examples of travel routes with different Dps.
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Fig. 3. Average detour index versus the respective spatial variable for 70 cities. (a) D, [Eq. (2)] with respect to the radius r from the city center, (b) ®, [Eq. (3)] with respect to
the Euclidean distance s, and (c¢) 9, [Eq. (4)] with respect to the angular distance 6, respectively. The radius-fixed sampling provides various curves for different radii (from 2 km
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Large-Scale Quantitative Analysis of
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Figure 1 | Rank-ordered color-usage distributions for an image and periods. (a) Fraction distribution of each color in a descending rank order for the art
work of German painter Johann Erdmann Hummel (1769-1852), “Schloss Wilhelmshihe with the Habichtswald” (This image is out of copyright.).
The horizontal axis indicates the rank of a color in frequency and the vertical axis denotes the proportion of a color in an image. The most (least) used

color is located at the leftmost (rightmost) position on the horizontal axis. The black dots represent color

choices from the same palette uniformly at

random. (b) Rank-ordered color-usage distributions (RCDs) of the 10 periods and photographs. Note that the distribution of photographs clearly shows
a different tail. Inset: RCD for the neoclassicism period. The displayed color corresponds to its rank. Note that the fraction is normalized by the image size

and the number of paintings in each period.
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Figure 2 | Box-counting dimension and its tendency. (a) The results of box-counting dimension over the 10 artistic periods display a significant
difference of the medieval period from the other periods. Error bars indicate the standard deviation. (b) The number of boxes to cover the color space
versus box size. The fractal dimension in the color space of Jackson Pollock’s drip paintings is measured around 2.35, similar to that of medieval paintings
(see also Figure S5 in the supplement), but dissimilar to that of another iconoclastic artist Pieter Bruegel the Elder.



Blue
80
« Green
Blue
Red %%[t=z=ses72:-
Green
25 1 60
N a N B
1o § t O 40{n * " os . .
‘1514 " . > 3 L
e b 0
<~ 10 s OB
'} , 101 +
e/ e’@.s' o, e e/b /0,807 '°o ” o,(/e»ge/ <9/ /79 /7 0/7? e ,,7 %"7) 0//' @99
ce ’Sse "C’e % the & ”oea’@sef)”oe o 00k the
Ce /Ue,, Ce /U@/,
Period

Period

Figure 3 | Spatial renormalization of original and shuffled images. (a) An example of transforming an image into a fixed point. (Figure 1a also contains
the image which is out of copyright.) (b) An illustrative example of the center of mass (CM), the fixed point (FP), and the shuffled fixed point (SFP) in
RGB color space. (c) Norm of difference of d; and d, over 10 periods and comparison with Pollock’s drip paintings and Pieter Bruegel the Elder’s
paintings. (d) Norm of cross product of d; and d, over 10 periods and comparison with Pollock’s drip paintings and Pieter Bruegel the Elder’s paintings
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Homogeneous function (& X}2h)

A function f(z) of one variable z > 0 is a homogeneous function if
f(A*x) = Af(z) forall A > 0,
and it is a power law with exponent 1/a if

f(z) =z f(1),

where f(1) is the value of the function at z = 1.

K. Christensen and R. Moloney, “Complexity and Criticality” (2005).



Homogeneous f(x), power law

FON2) = M (2)

choose A\ =1/

f(z) = 1 F1)
= 2/ (1)

power law

f(z) =z'*f(1)

f(Aaz) = (A2z)'/® f(1)
= Az'/ef(1)
= Af(z)

homogeneous
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Two variables function f(x, y)

A function f(x,y) of two variables is a generalised homogeneous function

if
F(Zz, \%) = Af(z,y) for all A >0,

and it satisfies a scaling form with exponent 1/a if

f(@,y) = l2]"/*Gx (y/I2l"'*)

where Gy (y/|z¥/?) = f(*1,y/|z|*/?) is the value of the function f at
z = £1 and the rescaled variable y/|z|%/*. The function G+ is the so-called
scaling function.



Generalised homogeneous function

F(Az, Xy) = Af(z,y)
=t ao—
|x|’ o |x|1/a

flz,y) = 1 £ (£1, %)

= |z 1/“f(il,:y/lfvlb/“")

= |z|V/eg, (y/|m|b/a)

scaling form



Scaling function form

f(@,9) = |2['/°G (y/|2*)

(A2, \y) = (*[z)/* G (Ay/ (A2}
= \z 1/ag(y/|m|b/a.)
= Af(z,y)

generalised homogeneous function
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f(z,y

EX)

=T

(z,y)

f

=1/2

b

?

a=1/3

7
= 3,\° = 5.2

A= 2

AG;



flz,y) = a° + 9
z 3 f(z,y) =1 +y*/2?
23 f(z,y) = 1+ (y/a®/?)"

f(@,9) = lal/2Gx (y/|o]"/)
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Fractals M) «¢”

-|—>n|—>ﬂ|—>

nlog8

~ log8

Dilack = lim
black n—oo N log 3

~ log3

~ 1.89

D= fim 8M©)
{—00 logf




Table D.1 At iteration n, the linear size £ = 3™ with a total number of 9™ unit
squares of which 8" are black. The remaining 9™ — 8™ unit squares are white.

Iteration n 0 1 2 3

Linear size £ 3" 1 3 9 27
Total number of unit squares gn 1 9 81 729
Number of black unit squares 8" 1 8 64 512
Number of white unit squares 9™ — 8™ 0 1 17 217




Density or prosity

—0.11
MY B Pblack X /

Pwhite X ¢V = constant
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What is Percolation?

AFEE 2|0](2)

percolation nlUl
11 &, M E

2 HEHOIA (HZAHOIEIZ HI ROIJI))  commemmeeeem >
Cluster
7T /(‘9 Giant cluster
@ @
O B D) Square
® ;'.r—;‘ | lattice Z’
ﬁ ph— /
1O | @
(0@ @® Q| The number and properties
T 0] @ of clusters ?

Percolation- First discussed by Hammersley in 1957



A fun example

Let's consider a 2D network as shown
in left figure. The communication
network, represented by a very large
square-lattice network of
interconnections, is attacked by a
crazed saboteur who, armed with wire
cutters, proceeds to cut the connecting
links at random.

Q. What fraction of the links

(or bonds) must be cut in order
to electrically isolate the two
boundary bars?

A. 50%



Threshold concentration

- Threshold concentration ( 2. ) = 0.5927



Percolation thresholds

In finite systems as simulated on

Table 1. Selected percolation thresholds for a computer one does not have in

various lattices. ‘Site’ refers to site percolation

( rply defined

and ‘bond’ to bond percolation. In all cases, general a,Sha p:.{f tive threshold
only nearest neighbours form clusters, and no threshold; ?”V cirec IV.
correlations are allowed between different sites values obtained nu merlcally or

or bonds. If the result is not exact (see text), the

experimentally need to be
error probably affects only the last decimal.

extrapolated carefully to infinite

Lattice Site Bond system size.
Honeycomb 0-6962 0-65271 Thermodynamic limit - physicist
Square 0-592746 0-50000
Triangular 0- 500000 0-34729
Diamond 0-43 0-388
Simple cubic 0-3116 0-2488
BCC 0-246 0-1803
FCC 0-198 0-119
d = 4 hypercubic 0-197 0-1601 .
d=S5 hypercubic ~ 0-141 0-1182 Mathematically exact ?
d = 6 hypercubic 0-107 0-0942

d = 7 hypercubic 0-089 0-0787




Exact percolation threshold P,

Bethe lattice ( with z branch ) = 1

1Dchain = 1 z-1 pr—
square bond percolation = 1/2

triangular site percolation = 1/2

triangular bond percolation = 2 sin( %)

honeycomb bond percolation = 1—2sin( %) ><\A/>/\\/<>




Percolation Phase Transition

K. Christensen and R. Moloney, “Complexity and Criticality” (2005).



Percolation Theory
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Percolation Theory

n_ : density of clusters of size s [Ins=p (p<p.)
number of clusters of size s per lattice site s
o 1st moment of cluster size
For p<<p, n.oce® c=f(p)
For p=p, ngocs

/o

nocse® colp-p| (p—>p.)

PD : probability that any given site belongs to the infinite cluster

P +|]sn =p

P=0 (p<p)
B

P o|p-p, p=p,te
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Percolation Theory

2 -
D S N 2nd moment of cluster size

: average cluster size S (Percolation susceptibility)

<Clp-p|" (p<p.)
<C|p-p|"  (p>p.)

C .
y=y',;, R= F‘ universal

Percolation specific heat

Consider the Gibbs free energy as the singular part of the zeroth moment of
cluster size distribution.

Gy(p)= {Z n, (p)}

zeroth moment of cluster size

MO:DSOnS:DnSoc‘p—pC

2—o

sing

e

Percolation correlation length § oc| p—D.



Critical Percolation Thresholds

Table 1.1 The critical occupation probabilities for various lattice types
and dimensions in site and bond percolation. The current best estimates
for the critical occupation probabilities, which are not known exactly, are
given in decimal form. The second column lists the coordination number,
z (the number of nearest neighbours) for a given lattice.

Lattice z Site percolation  Bond percolation

d =1 line 2 1 1

d = 2 hexagonal 3 0.6971* 1 — 2sin(7/18)P:C
square 1 0592746214 108
triangular 6 1/2° 2sin(7/18)b:¢

d = 3 diamond 4 0.4301f 0.38932
simple cubic 6 0.31160808 0.2488126"
body-centred cubic 8  0.2459615% 0.1802875"
face-centred cubic 12 0.1992365% 0.1201635"

d = 4 hypercubic 8  0.196889 0.160130

d = 5 hypercubic 10 0.14081! 0.118174

d = 6 hypercubic 12 0.1090] 0.09420%

d = 7 hypercubic 14 0.08893! 0.078685K

Bethe z 1/(z—1)™ 1/(z—1)™

K. Christensen and R. Moloney, “Complexity and Criticality” (200%



Universal Critical Exponents

Exponent: Quantity d=1 d=2 d=23 d=4 d=15 d =6 Bethe
B: Pylp) x (p—p:)? 0(dis) 5/36 0.4181(8) 0.657(9) 0.830(10) 1 1
~ 1 xl(p) o |p—pe|l ™7 1 43/18 1.793(3) 1.442(16) 1.185(5)> 1 1
v: E(p) x|p—pe|™ 1 4/3b 0.8765(16) 0.689(10)° 0.569(5) 1/2 1/2
o: se(p) ox [p—pe| 17 1 36/91 0.4522(8)d 0.476(5) 0.496(4) 1/2 1/2
7: n(s,p) x s TG(s/sg) 2 187/91 2.18906(6)4 2.313(3)° 2.412(4)° 5/2 5/2
D: se ox &P 1 91/48P 2.523(6) 3.05(5) 3.54(4) 4 4
T — 2 3—T 1
o o vao v

Scaling Relations!

K. Christensen and R. Moloney, “Complexity and Criticality” (2005).
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- Z sn(s, pe) — Z sn(s,p) + (p — pe)
Poo(p) = Y _[sn(s,pc) — sn(s,p)] + (p — pc)

< 3 sTIG(0) — G(s/s¢)] + (0 — pe).

s=1



) o /1 B G(s/s¢)] ds + (p — pe)

8

x / (use)* G(u)|sgdu + (p — p.) with u = s/s¢
1/s¢
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X
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Moo (p; £)
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M (pc; £) P
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Self-similarity




£>€

Moo (&:€) ox (£/€)%€P  for £>> ¢
= ¢P=dpd  for 0> ¢



MOO (pc; E) X gD—d
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Moo (&;€) oc (£/€)%€P  for £> ¢
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Scaling Relations

Near p = p.

P=—"— 7= ~ 2—a=

_92 3— _
d d z-—1:2,B+y/ Dza’—é
o 1%

Exact results on a Bethe Lattice ( Cayley tree )

1
pC:—’ T:—, G:—’ 7/:1, ﬂ:l
z—1



Finite size scaling
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Real-space renormalisation group procedure

We now outline a three-step procedure to perform a real-space
renormalisation group transformation

(1) Divide the lattice into blocks of linear size b (in terms of the
lattice constant) with each block containing at least a few sites.

(2) Replace each block of sites by a single block site of size b which
is occupied with probability R, (p) according to the renormalisation
group transformation.

(3) Rescale all lengths by the factor b to restore the original lattice
spacing.



eee




: | £(p) < [p—pc|
&/b -
&/b” 1
&/b° 1
>——> D
0 1




p* =0 1/2
1



$ Ip—pl™ _
o L = Ry (p) — el o €
Ry(p*) =p”
log b ¢ .
V= or p —
log (LE2p)=a(e)]) p=r
& lp—p*|
log b

= for p — p*

dR
].Og( dpb 'p*)




Ry(p) = p? + 3p*(1 — p) = 3p* — 2p?

BEBBEHLRE

P +3p*(1 -

Ry (p) 5 5
Ry(p*) = 3p** — 2p*° = p*

pr("-1)(2p"-1)=0 & p'=41/2







(exactvalue) p, = 0.59274621

2p? — p*

0
(—1++5)/2
1.



Ry(p)

p*=0
0.
618 1



Ry(p) = p* + 4p3(1 — p) + 2p*(1 — p)? = 2p? — p*

dR
—2 = (4p —4p)| = (V5-1)
dp D* p*
log b log 2
v = = ~ 1.635
log ((42)| ~ 2los(vV5-1)

(exactvalue) v =



Small cell renormalization

V3x+3 triangular lattice

2N ,..M ¢+ ;_ : \‘* __JL V3xV3 cell

- - ,?’__’ ‘,‘f: ' 1X1 cell

- p;_~.l\—: A " . ./' : ’ ~‘:‘-" q °

DVAVAVAVAVAVO VA

A \ 2 AVAY » \ 7o
op' 3 In V3
=2 =2, v = B 3547
ol . 2 In(3/2)

2x2 square lattice bond percolation (?)

p'=p’ +5p*(1-p)+8p’(1-p)* +2p°(1-p)’
=2p° —-5p*+2p’ +2p°

p =—, b=2 and ﬂ:dp =E
dp| . 8

p=p

2
v =1.428

Recursion relation

p'=R,(p)=p’+3p°(1-p)

Fixed point p =0 1

1
b 2)

| 4
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P, 2( ) 3( )

A B ¢ A &
D E | T
G H G
{a) {b)
pS pi-p)  4ptli-py  203(1-p)2
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The Ising model becomes scale invariant at (Tc,0), where the correlation
length is infinite.

AL
Kadanoff's block spin transformation Rl lj\si
TITILRL T Ty !
(1) Divide the lattice into blocks, I, of linear T # T l l l o $ bf
size b (in terms of the lattice constant) with T T LT L]
each block containing b¢ spins. $ $ i I 1 $ I % f )
(2) Replace each block | of spins with a
single block spin, s;, according to some T ' ""/sf
coarse graining rule which is some function gl
of the spins within block I. A :: oy
ba
(3) Rescale all lengths by the dimensionless Y ¥ o
scale factor b to restore the original lattice T T
spacing. v .
_T-T. : : : :
T, e
H T |
h= — =(8H LILITH a
kT g T[T t






In the vicinity of the critical point, t' = A.(b)t, b>1,Ap >1

t" = A(b)t" = A¢(by)A¢(b)t = A,(b1by)t

At(bz)/lt(bl) — At(b1b2) At(l) =1 Power law

t' =b¥t fort — 0F, with y; > 0,
h =b¥"h for h — 0%, with y; > 0.

1 —
é’l =% €I~|tll—v == |bytt|—v — b—Vytltl—VNEltl—v yt —_—

< Ik

F(th) = — %kBTln Z(t, h, N)
1
N’
— b f ().

=—b"%*—kgTlnZ(t',h',N')

f(t, h) = b=4f(b¥t,b¥"h) for t — 0F,h — 0.




Generalised homogeneous function

F(Zz, X)) = Af(z,y)

flz,y) = 1 £ (£1, %)

= |z 1/“f(il,:y/lfvlb/“")

= |z|V/eg, (y/|m|b/a)

scaling form



fs(t,h) = b4 f (b t,b¥"h) for t — 0%, h — 0.

b = |t|_1/yt 0(6

=] 5 o] ]
= [t|"* (t/|t|,h/|t|yh/yt)
= |t|"“'d‘fs (il, h/|t|yh/yt) for t — 0%, h — 0.
2 —a=uvd,
A = yn/yt,
fo(t,h) = |t|*=>Fy (h/|t|2) fort — 0%, h — 0 |



Widom Scaling Ansatz m(.» = -m(,-h).

0 fort >0
+|¢t|P fort — 0~

lim m(t,h) x {

h—0*

m(0, h) o sign(h)|h|/®  for h — 0F
m(t,h) = |t|° My (R/]t|*) fort — 0F,h —0

My(z) = — My (—x) M (z) « sign(z)|z|*/®  for z — +o0



mit, ) o [t%sign(h) (|h|/|t]*) """ for h— 0%, h/|t]* — %00
o sign(h)|h|*/ for h — 0%, h/|t|> — +oo

A = (36

fs(t,h) = |t|2_a.7::|: (h/|t|A) for t — Oi, h—0

— ! 6f8 2— —A:
m(t,h) = kT (3h )t o 15

1 e
- kBT|t|2 SF, (h/|t|&)

= [t|>~*"A My (h/[t|*) fort — 0%, B — 0



1 om
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2—a—2A=—v
Free energy density
fo(t,0) o |t|*~* fort — 0

fo(t,0) oc £ %o [t|"* fort — 0



kaTx(t) = [ gl r,)dr;

kT x(t,0) < |t|77 fort—0

/Vg(

)dr; o /00 r‘(d—2+ﬂ)gi(r/§,0)rd_1 dr

0
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= |t|_”(2_”)/ u' "G+ (u,0) du
0

for t — 0*

with r = u¢&

fort — 0.



Exponent: Quantity d=1* d=2 d=3 d>4 Mean-field

a: c(t,0) o |t| 7= 2—2/k 0(log) 0.111(2) 0 0 (dis)
B: m(t,0) oc (—t)? 0 1/8 0.3262(13)> 1/2 1/2
v x(t,0) o< |t] 77 2/k 7/4  1.237(3) 1 1
6 : m(0,h)  sign(h)|h|'/? 00 15  4.792(18) 3 3
v: £(t,0) o< |t 7Y 2/k 1 0.6297(8)>  1/2 1/2
n: g(rt,0) occr=(@=2tMG, (r/€,0) 1 1/4 0.036(5) 0 0

aUsing the reduced ‘temperature’ t = exp(—kJ/kBT), where k > 0 is a constant.
b[Binder and Luijten, 2001].
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Surface roughness
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Dynamic Scaling in Surface Growth

 Surface roughness W(t) [ ~ -
« Growth exponent S W)= \/ZZ[h(i,t)—h(f)]
» Roughness exponent ¢ -
» Dynamic exponent ~ ——
(A) p
.//\
SN A
log w log(w/L%) s i log(w/L*)
Sy g
> > -
log ¢t | log(t/L*)
v
(B)

Ref.: A.-L.Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge Univ. Press.
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Phase transition in its strict sense can only be observed in an infinite system, for which equilibration
takes an infinitely long time at criticality. In numerical simulations, we are often limited both by the
finiteness of the system size and by the finiteness of the observation time scale. We propose that one can
overcome this barrier by measuring the nonequilibrium temporal relaxation for finite systems and by
applying the finite-time—finite-size scaling (FTFSS) which systematically uses two scaling variables, one
temporal and the other spatial. The FTFSS method yields a smooth scaling surface, and the conventional
finite-size scaling curves can be viewed as proper cross sections of the surface. The validity of our FTFSS
method is tested for the synchronization transition of Kuramoto models in the globally coupled structure
and in the small-world network structure. Our FTFSS method is also applied to the Monte Carlo dynamics

of the globally coupled g-state clock model.

DOI: 10.1103/PhysRevLett.112.074102

Introduction.—In the frame of statistical physics, it is
important to find critical exponents in a system aiming to
understand its critical behavior. For a limited number of
model systems, it might be possible to analytically obtain
the exponents via the mean-field analysis, the transfer-matrix
calculation, the renormalization group approach, and other
analytic tools [1]. In most realistic model systems, however,
a rigorous analytic calculation of critical exponents is often a
formidable task, making numerical approaches unavoidable
and essential.

A phase transition manifests itself as a singularity of
the free energy, which exists only in thermodynamic limit
of the infinite system size. On the other hand, one can only

PACS numbers: 05.45.Xt, 05.70.Fh, 64.60.Ht

is chosen in such a way that its anomalous dimension is null
[4], the scaling form of Q is written as Q(¢,L,K) =
f(tL=%, (K — K.)L'"). In words, the first scaling variable
tL* describes the competition of the two time scales, the
finite observation time ¢ and the relaxation time 7z, while
the second scaling variable (K — K,)L!/* is for the com-
petition of the two length scales, the finite system size L
and the correlation length £. It is straightforward to extend
the scaling form for the globally coupled system, which
reads

Q(t,N,K) = f(tN7%, (K — K )N'7?), )
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FIG. 1 (color online). Finite-time—finite-size scaling (FTFSS):
Q(t,N,K) = f(tN?, (K — K,)N'/%) for the globally coupled
Kuramoto oscillators with quenched disorder yields a smooth
scaling surface with v =5/2, z=2/5, and K, = 1.595769.
The scaling collapse is good enough to make the difference of
surfaces obtained from different sizes N = 800, 1600, 3200, and
6400 almost invisible. The thick dashed and solid lines are two
cross sections of the surface at K =K, and at tN~%=1.2
displayed in Figs. 2(b) and (d), respectively.
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FIG. 2 (color online). The two-variable FTFSS form (1) in
Fig. 1 at zero temperature is cross sectioned to one variable
scaling form (b) Q = f(tN%,0) at K=K, and (d) Q=
f(tN"2 =12,(K — K,)N'/?). The raw data [(a) and (c)] ob-
tained for various system sizes are scaled into smooth scaling
curves [(b) and (d)] with the critical exponents (b) Z = 2/5 and
(d) v = 5/2 with the critical coupling strength K, = 1.595 769.
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FIG. 3 (color online). The FTFSS for the globally coupled
Kuramoto oscillators with thermal disorder only: 7 = 2 and 7 =
1/2 are obtained at K, = 2 (in units of the temperature 7). The
thick dashed and solid lines are two cross sections of the surface at
K =K, and at tN—% = 2.5 displayed in (b) and (c), respectively.
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