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Callen (1984), Ch 9

Doughnut shape tube and a movable piston

▶ ideal gas of N monatomic molecules on each side : PV = NkBT
▶ T : Temperature of heat reservoir
▶ m : piston mass
▶ R : radius of the tube.
▶ A : cross sectional area of the tube.
▶ PL (PR) : pressure of the gas on the left (right) hand side
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Mechanical solution

Pressure (v := V/N volume per particle)

PL,R =
kBT
vL,R

with vL,R =
AR
N

(π
2 ± θ

)
Equilibrium position θe of the piston

PRA = PLA + mg sin θ
∣∣∣∣
θ=θe

⇒ θe =
mgRπ2

8NkBT

(
1 − 4θ2

e
π2

)
sin θe

θe = 0 is always a (trivial) solution.
Is nonzero θe possible?

1 − 4θ2
e

π2 =
T
Tc

θe
sin θe

,

where Tc := mgRπ2/(8NkB). (J/(J/K) = K)
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Condition for the existence of a nontrivial solution

1 > 1 − 4θ2

π2 =
T
Tc

θ

sin θ
>

T
Tc

T ≥ Tc : θe = 0 is the unique solution
T < Tc : two symmetric nontrivial solutions (+ trivial one)
Tc is the critical point.
When T < Tc, what is the true equilibrium solution among
three solutions? stability analysis with free energy
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Thermodynamic solution

Total free energy for a ‘fixed’ macroscopic condition θ

F(θ) = −NkT ln vR − NkT ln vL + mgR cos θ + F0(T,N)

Free energy minimum condition (freely moving piston)

∂F
∂θ

= 0 ⇒ NkBT
vR

AR − NkBT
vL

AR − mgR sin θ = 0

∂2F
∂θ2 > 0 ⇒ NkBT

(θ − π/2)2 +
NkBT

(θ + π/2)2 − mgR cos θ > 0

Stability of the trivial solution θe = 0 ⇒ T
Tc

− 1 > 0.

Order parameterM := vL(θe)− vR(θe) = 2ARθe/N.
▶ T ≥ Tc : M = 0
▶ T < Tc : M ̸= 0
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Free energy as a function of T and θ

θ

F (T, θ)

T > Tc

T = Tc

T < Tc

At T = Tc, minimum is very flat. Large fluctuation.

8



Landau theory : small θ expansion

Approximation around Tc (T := Tc(1 + t) with |t| � 1).

sin θe =
T
Tc

θe

1 − 4θ2
e

π2

⇒ θe −
1
6θ

3
e ≈ (1 + t)

(
θe +

4
π2 θ

3
e

)

−tθe ≈
[
(1 + t) 4

π2 +
1
6

]
︸ ︷︷ ︸

=:C

θ3
e

▶ t ≥ 0 : θe = 0
▶ t < 0 and |t| ≪ 1 : |θe| ≈

√
−t/C ∼ ±|t|1/2

t is also called a reduced temperature.
Can we formulate a theory to predict which will happen,
θe =

√
−t or −

√
−t ?

No! Spontaneous Symmetry Breaking (SSB)
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If we write |M| ∼ |t|β , then β = 1
2 .

β is called the order parameter (critical) exponent.
Mathematically speaking,

β := lim
t↑0

ln |M|
ln(−t) .

Should not be confused with inverse temperature β
In general,M has corrections to scaling
Even if there is a logarithmic corrections, β is defined in the
same way
Example

M = |t|1/2 × | log |t||α︸ ︷︷ ︸
log correction

× (1 + at0.2)︸ ︷︷ ︸
corrections to scaling

⇒ lim
|t|→0

lnM
ln |t| =

1
2
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Observation: When T ≈ Tc, the minimum of the free energy is
found for small |θ|.
Taylor expansion

f(θ,T) :=
1
NF(θ,T)

= −kBT ln

(
1 − 4

π2 θ
2
)
+

mgR
N (cos θ − 1) + f0(T)

≈ kB
8

π2Tc

[
1
2 tθ2 +

1
4Cθ4

]
+ freg(T)

In terms of M := vL(θ)− vR(θ)

fsing(M,T) =
1
2atM2 +

λ

4!M
4,

where a > 0 and λ > 0.
The above fsing is also known as Landau free energy.
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Free energy at equilibrium
T ≥ Tc

fe(T) = freg(T)

T < Tc

fe(T) = fsing(M ∼
√
−t,T) + freg(T) = b|t|3/2 + freg(T)

fe는 f의 최솟값

Ehrenfest classification은 fe를 이용한다.

Landau theory는 f를 이용한다.

fe, f 모두 free energy (density)라고 부르니 익숙해지자.

결정되지 않은 θ (M) 역시 order parameter라 부르니 이 역시

익숙해지자.
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Idea of the Landau theory

Singular and regular parts are separated. Only the singular part
is under consideration.
Free energy (density) f is an analytic function of (macroscopic)
θ.

Approximate free energy should have the same symmetry as
the original f.

f(−θ,T) = f(θ,T)

(even function of θ)
Coefficient ofM2 is proportional to T − Tc.
Coefficient ofM4 is positive (due to stability).
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Exercise

What if the table is tilted by small angle h? In particular, check
(|t| � 1)

∂M(h)
∂h

∣∣∣∣
h=0

∼ |t|−1.

Since h breaks the symmetry, it is called a symmetry-breaking field.
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Ising model

Hamiltonian with periodic boundary conditions

HIsing(s) = −J
∑
〈i,j〉

sisj − H
∑

i
si

Remarks
▶ s : (ordered) set of all N spins si. si = ±1
▶ We only consider the ferromagnetic Ising model (J > 0)
▶ ⟨i, j⟩ : sum over nearest neighbor pairs
▶ H : external magnetic field (symmetry breaking field)
▶ When H = 0, HIsing(s) = HIsing(−s)
▶ When H = 0, symmetric two ground states : s = 1 or s = −1
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Partition function and thermodynamics

“Landau” free energy

Z =
∑

s
e−βHIsing =

∑
s

∑
−1≤M≤1

δ

(
1
N
∑

i
si − M

)
e−βHIsing

=
∑
M

[∑
s
δ

(
1
N
∑

i
si − M

)
e−βHIsing

]
=:
∑
M

e−NβfLan(M,T,H),

where fLan(M,T,H) = −kBT
N ln

∑
s
δ

(
1
N
∑

i
si − M

)
e−βHIsing(s).

A random variable M is also called an “order parameter”
Note that P(M = m) = e−NβfLan(m,T,H)/Z
“The” order paramterM = lim

N→∞
〈M〉 = lim

N→∞

∑
m

mP(M = m)
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If fLan(M,T,H) has (the unique) minimum at M = m0(T,H), then

e−Nβf(m0,T,H) ≤ Z ≤ Ne−Nβf(m0,T,H)

⇒ fLan(m0,T,H)− kBT lnN
N ≤ −kBT

N lnZ ≤ fLan(m0,T,H)

Therefore,

f(T,H) := − lim
N→∞

kBT
N lnZ = f(m0,T,H)

Note that m0 = limN→∞〈M〉 = M.
위의 계산이 free energy minimum이 평형상태가 된다는 의미이다.

m0 is actually not unique for T < Tc (cf. the Toy model).
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Landau theory for the Ising model on a complete graph

What is fLan? Let us first resort to the Landau theory for H = 0.
▶ fLan(−M,T) = fLan(M,T) : even function of M
▶ Numerical observation : around T = Tc, m0 is small.

Let’s be brave and use the Landau theory! (neglect the regular
part)

fLan ≈
1
2atM2 +

λ

4!M
4

Now the repeat of the calculation in the Toy model gives the
solution.
It does work for a certain system: all-to-all interaction
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all-to-all interaction with J 7→ J/N. Js2
i = J is included.

HIsing = − J
2N

N∑
i,j=1

sisj − H
N∑

i=1
si = −N

(
1
2JM2 + HM

)

⇒ e−NβfLan =

(
N

N(1 + M)/2

)
e−Nβ(−JM2/2−HM).

fLan = −1
2JM2 − HM − kBT

N ln

(
N

N(1 + M)/2

)
≈ −1

2JM2 − HM − TkB

(
−1 + M

2 ln
1 + M

2 − 1 − M
2 ln

1 − M
2

)
≈ −kBT ln 2 − HM +

1
2 (kBT − J)M2 +

kBT
12 M4

Landau theory works. We have only to find the minimum of fLan.
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Discussion

Let’s rewrite the Hamiltonian as (assume H = 0)

HIsing = −1
2J
∑

i
si
∑
j∈Ni

sj = −1
2J′

∑
i

si
1

|N |
∑
j∈Ni

sj︸ ︷︷ ︸
=:M′

i

= −1
2J′

∑
i

siM′
i,

where Ni is the index set of the nearest neighbors of site i with
cardinality |N | (translationally invariant) and J′ = J|N |
If M′

i ' M in typical configurations, then HIsing ≈ − 1
2 J′NM2

By (abusing) the law of large numbers, one would expect
M′

i ' M when |N | is large. Accordingly, when |N | is small, the
above approximation is not likely to work.
Then how small is small? It turns out that the embedding
dimensions are more important than |N | itself (see Sec. 3).
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Exercise (Project 1-1)

Consider the following 1-D “Ising model” with PBC (sN+i = si).

H2 = −J
2

N∑
i=1

si(si+1 + si+2 + si−1 + si−2),

which has |N | = 4 just like the 2D Ising model.
Its free energy density is as follows. (K := βJ)

f(T) := −kBT lim
N→∞

1
N lnZ

= −kBT ln
e2K + 1 +

√
(e2K + 1)(e2K − 3 + 4e−2K)

2

which is analytic; hence no phase transition. Check it.
(Mathematica would be helpful)
If H 6= 0, the calculation would be a nightmare, but try it.
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Further discussion

If

Hn = −J
N∑

i=1
si

j+n∑
j=i+1

sj

with large but fixed n (for example, n = 1010), do we expect a phase
transition? Consider the Ferron-Probenius theorem.
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Beyond the Landau theory

How good is the Landau theory.
▶ Landau theory predicts β = 1

2 .
▶ Onsager solution for the 2D Ising model gives β = 1

8 .
▶ Numerical studies for the 3D Ising model have concluded β < 1

2 .

Then, why do we care about the Landau theory? First because it
works sometimes (when?) and second because it is insightful.
Can we develop a general “approximation” scheme that gives a
plausible result? This is all about the renormalization group
(RG).
We want to come up with an effective model.
▶ Block spin : similar degrees of freedom with similar Hamiltonian

(Sec. 2)
▶ Field theory : an effective model with (uncontrained) continuous

degrees of freedom (Sec. 3)
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진짜 시키고 싶은 Project (?)

Find the mathematical formual of the “exact” fLan in one
dimension (numerically, maybe?)
Can you find fLan for the critical 2-D Ising model (numerically)?

Kc =
1
2 ln

(
1 +

√
2
)

저도 답은 모릅니다.
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졸보기 (뭉뚱그리기)

27



source : https://www.scientificamerican.com/article/can-you-drink-
saturns-rings/

28



분배함수 졸보기 : the 2D Ising model on a square lattice

Consider a tiling with regular tiles

B spins in a block
29



Fix a tile and define a block spin transformation (i : block index)

T (s′i : si,1, . . . , si,B︸ ︷︷ ︸
=:{si}

) such that
∑

s′i=±

T (s′i : {si}) = 1

Example 1: decimation (blue blocks) T (s′i : {si}) = δ(s′i, si,1)

Example 2: majority rule (pink blocks) T (s′i : {si}) = Θ(s′iS)
Example 3 : half-and-half rule (yellow blocks)

T (s′i : {si}) =
1 + s′i

2

[
Θ(S) + δS,0

1
2

]
+

1 − s′i
2

[
Θ(−S) + δS,0

1
2

]
,

▶ s′i = ±1 (same as the original spin)

▶ S :=
B∑

k=1
si,k (sum of B original spins in a block)

▶ Θ(x) is the Heaviside step function with Θ(0) = 0.
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new (reduced) Hamiltonian with block variables H := βHIsing

e−H ′(s′) = Trs
∏

i
T (s′i : {si})e−H (s)

Partition function and free energy density (N′ is also an integer)

Z ′ = Trs′ e−H ′(s′) = Trs e−H (s) = Z,

f = 1
N lnZ =

1
N lnZ ′ =

1
bdN ′ lnZ ′ = b−df ′

where bd(= B) is the number of sites in a block and we neglect
−kBT for convenience.
semi-group property : If H ′ and H have the same form,
repeating the block transformation gives H ′′ with the same
form as H . Formally, we write H ′ = RbH .

H ′′ = RbH
′ = R2

bH

real space renormalization group (RSRG)
31
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the 1D Ising model : Transfer matrix

Partition function of the 1D Ising model (K := βJ, h = βH)

Z =
∑

s1=±
· · ·

∑
sN=±

eKs1s2+hs1eKs2s3+hs2 · · · eKsNs1+hsN

2 × 2 transfer matrix T

Tss′ = eKss′+h(s+s′)/2 → T =

(
T++ T+−

T−+ T−−

)
=

(
eK+h e−K

e−K eK−h

)

Note that (cf : decimation)∑
s2=±

eKs1s2+h(s1+s2)/2eKs2s3+h(s2+s3)/2 =
∑

s2=±
Ts1s2Ts2s3 = (T 2)s1s3
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Partition function and the transfer matrix

Z =
∑

s1=±

(
T N)

s1s1
= TrTN

Eigenvalue λ of T

λ2 − 2λeK cosh h + e2K − e−2K = 0

⇒ λ± =eK cosh h ±
√

e2K cosh2 h − e2K + e−2K

=eK cosh h ±
√

e2K sinh2 h + e−2K

Z = λN
+ + λN

−
free energy density

−kBT lim
N→∞

lnZ
N = −kBT lnλ+ − kBT lim

N→∞

1
N ln

[
1 +

(
λ−
λ+

)N
]

= −kBT ln
(

eK cosh h +
√

e2K sinh2 h + e−2K
)
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Decimation for h = 0

Assume (A = 1 and N′ = N/2)

−H = N lnA + K
∑
〈i,j〉

sisj, −H ′ = N′ lnA′ + K′
∑
〈i,j〉

s′is′j

decimation

Tre−H =
∑

s1,s3,s5,...

∑
s2

A2eK(s1+s3)s2
∑
s4

A2eK(s3+s5)s4 · · ·

=
∑

s1,s3,s5,...

{
2A2 cosh [K(s1 + s3)]

}{
2A2 cosh [K(s3 + s5)]

}
· · ·

=
∑

s1,s3,s5,...

{
2A2 cosh(2K)

1 + s1s3
2 + 2A2 1 − s1s3

2

}
· · ·

=
∑

s1,s3,s5,...

(
A′eK′ 1 + s1s3

2 + A′e−K′ 1 − s1s3
2

)
· · · = Tr′ e−H ′
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Another approach

T ′ =

(
a b
c d

)
= A′

(
eK′ e−K′

e−K′ eK′

)

= T 2 = A2

(
e2K + e−2K 2

2 e2K + e−2K

)

ac = (A′)2 = 4A4 cosh(2K) = bd.
a/b = e2K′

= cosh(2K) = d/c,
RG transformation

K′ = R2(K) =
1
2 ln cosh(2K), A′ = 2A2√cosh(2K) = 2A2eK ′

Free energy density (b = 2, d = 1)

lnA + f(K) = lnA +
1
2 (ln 2 + K ′)︸ ︷︷ ︸

= 1
2 ln A′

+
1
2 f(K ′)
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RG transformation

One more decimation

lnA + f(K) =
1
2

(
lnA′ +

1
2 (ln 2 + K ′′) +

1
2 f(K ′′)

)
What do we expect if we perform m decimations. (Rm

b )

▶ It is convenient to write tanhK′ = tanh2 K.
▶ Fixed point K∗ : tanhK∗ = tanh2 K∗

▶ tanhK∗ = 0 (T = ∞ : stable) or 1 (T = 0 : unstable)
▶ Around K∗ = 0, K′ ≈ Kb (b = 2)
▶ K(m) = Rm

b (K) ≈ Kbm
: faster than exponential.

lim
m→∞

Rm
b (K) = 0
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Generation of new terms : 2D case

Decimation in 2D

Trs eKs(s′1+s′2+s′3+s′4)+hs = 2 cosh(K(s′1 + s′2 + s′3 + s′4) + h)

H ′ =
∑

ln cosh(K(s′1 + s′2 + s′3 + s′4) + h)

= K(1)
∑

i
s′i +

∑
ij

K(2)
ij s′is′j +

∑
ijk

K(3)
ijk s′is′js′k +

∑
ijkl

K(4)
ijkls

′
is′js′ks′l + · · · ,

where we neglect s independent constant. Note that if h = 0,
only even terms appear.
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From the beginning, we have to consider all terms that are
supposed to be generated by the RG process, which makes
finding an exact solution by RG infeasible.
Although 2D Ising model is solved exactly, no exact RSRG
transformation is available.
Even 1D model with nnn interaction is difficult to study the
RSRG because longer distance interaction is generated.
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Project 1-2

Majority rule이나 Half-and-half rule을 이용하여 1차원 Ising
model의 RSRG를 분석하시오.

symmetry를 무시한 block transformation을 하면 어떻게 되는지

분석하시오. 예를 들어,

T (s′; s1, s2) =
1 + s′

2
(1 + s1)(1 + s2)

4 +
1 − s′

2

(
1 − (1 + s1)(1 + s2)

4

)
Project 1-1의 문제의 RG분석을 시도해 보시오.

참고로 출제자도 답은 모름
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Exercise

다음 reduced Hamitonian을 분석하시오. (N = 2n)

−H = K1
∑

i=1,3,5,...
sisi+1 + K2

∑
i=2,4,6,8

sisi+1

= K1s1s2 + K2s2s3 + K1s3s4 + K2s4s5 + · · ·

Exact solution을 먼저 구해보기를 추천드립니다.
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RG analysis : general discussion

{K} ≡ (h1,K1, . . .) : a (ordered) set of all coupling constants
that can appear in the RG process. Some (in fact, most of)
coupling constants are zero in the original model.
H ′ contains more nonzero coupling constants than H .
All we have to do is to find {K ′} = Rb({K}) :
renormalization-group transformation (practically almost
impossible to find exactly).
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If there is a non-trivial fixed point K∗, h∗ such that
K′

1 − K∗ = byK(K1 − K∗) and h1 − h∗ = byh(h1 − h∗), then

fsing(eK, eh) = b−dfsing(byKeK, byheh),

where eK = K1 − K∗ and eh := h1 − h∗. We assume all the other
exponent has negative exponent y.
1D Ising model is not a good example (e′K = e2

K)
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Callan-Symansik-like equation

f is a generalized homogeneous function

f(byKeK, byheh) = bdf(eK, eh)

cf. Euler homogeneous function

U(bS, bV, bN) = bαU(S,V,N)

If b is a continuous variable,

b d
dbbdf(eK, eh)

∣∣∣∣
b=1

= df(eK, eh) =

[
yK

∂

∂ ln eK
+ yh

∂

∂eh

]
f(eK, eh),

which is a Callan-Symansik(-like) equation or RG equation in
the field theory.
cf. U = TS − PV + µN in thermodynamics
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n-vector model

(reduced) Hamiltonian of the n-vector model

−H =
1
2Kijsi · sj + hi · si, Kij = K(2pδij + δ|i−j|,1)

where si is an n-dimensional vector with |si|2 = 1.
▶ n = 1 : Ising, n = 2 : XY, n = 3 : Heisenberg,⋯.

▶ δ|i−j|,1는 i, j가 nn이면 1아니면 0을 의미한다.

▶ p는 K가 positive-definite행렬이 되도록 하는 임의의 값이다.

▶ |si|2 = 1 (상수)이므로, p의 값은 물리에 영향을 주지 않는다.

partition function

Z = Tr exp

(
1
2Kijsi · sj + hi · si

)
, Tr ≡

∏
i

∫
dnsiδ(|si| − 1).
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a few Observables

Consider uniform h, that is, hi = h = (h1, . . . , hn)

Magnetization m = (m1, . . . ,mn)

Nmα :=
∑

i
〈sαi 〉 =

1
Z Tr

(∑
i

sαi

)
exp

(
1
2Kijsi · sj + hi · si

)
=
∂ lnZ
∂hα

Susceptibility χαβ

kBTχαβ =
∂mα

∂hβ
=

1
N
∂2 lnZ
∂hβ∂hα

=
1
N

(
1
Z

∂2Z
∂hβ∂hα

− 1
Z2

∂Z
∂hβ

∂Z
∂hα

)

=
1
N

∑
i,j

〈
sαi sβj

〉
−

〈∑
i

sαi

〉〈∑
j

sβi

〉
︸ ︷︷ ︸

=O(N)
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Hubbard-Stratonovich transformation

Gaussian적분

I =
∫ ∞

−∞

( N∏
i=1

dϕi

)
exp

∑
ij

(
−1

2ϕi(K−1)ijϕj + siϕi

) ,
where K is a real symmetric positive-definite matrix.
치환 적분 ϕi = Kij(ψj + sj) (note참고)

I = detK exp

1
2
∑

ij
siKijsj

∫ (∏
i

dψi

)
exp

−1
2
∑

ij
ψiKijψj


=
√
(2π)N detK exp

1
2
∑

ij
siKijsj


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Hubbard-Stratonovich Transformation

exp

(
1
2siKijsj

)
= C

∫
[dϕ] exp

(
−1

2ϕiJijϕj + siϕi

)
.

J := K−1, [dϕ] :=
N∏

i=1
dϕi,C := 1/

√
detK(2π)N

Einstein convention (반복되는 index에 대한 합)

discrete variable s → continuous variable ϕ
s간의 상호작용을 ϕ간의 상호작용으로 변경.

s는 서로 독립적으로 처리 가능.
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Hubbard-Stratonovich transformation for the n-vector model

Z
C n =Tr

∫
[dϕ] exp

[
−1

2K
−1
ij ϕi · ϕj + si · (ϕi + hi)

]
⇐ ϕi + hi 7→ ϕi

=Tr

∫
[dϕ] exp

[
−1

2Jij(ϕi − hi) · (ϕj − hj) + si · ϕi

]
=

∫
[dϕ] exp

[
−1

2Jijϕi · ϕj + Jijhi · ϕj −
1
2Jijhi · hj + A(ϕ)

]
,

where A(ϕ) := lnTr exp(si · ϕi).
A(ϕ) is related to the modified Bessel function I.
For n = 1,

A(ϕ) = ln
∏

i

( ∑
si=±1

esiϕi

)
=
∑

i
ln(2 cosh(ϕi))

≈ N ln 2 +
∑

i

(
ϕ2

i
2 − ϕ4

i
12

)
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For general n,

A(ϕ) ≈ N lnSn−1 +
∑

i

(
|ϕi|2

2n − (|ϕi|2)2

4n2(n + 2)

)
,

where Sn−1 is the area of (n − 1)-sphere.
(S0 = 2,S1 = 2π,S2 = 4π)
Partition function

∴ Z =

∫
[dϕ] exp

[
−H̃(ϕ) + Jijhi · ϕj −

1
2Jijhi · hj

]
where

H̃(ϕ) =
1
2Jijϕi · ϕj + n lnC − A(ϕ)

≈ 1
2

(
Jij −

1
nδij

)
ϕi · ϕj +

(ϕi · ϕi)
2

4n2(n + 2) + C ′

where C, C ′ are constants.
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What is J = K−1

d dimensional hypercubic lattice with index i = x = (x1, . . . , xd).
1 ≤ xi ≤ L, N = Ld. 편의상 L은 홀수라고 하자.

Dirac notation: orthonormal basis {|x〉}.
operator K̂: 〈x|K̂|y〉 = Kx,y = 〈y|K̂|x〉
Translational invariance: Fourier mode

|k〉 ≡ 1√
N
∑

x
eik·x|x〉, k =

2π
L (n1, . . . , nd),ni = −L − 1

2 , . . . ,
L − 1

2 ,

K̂|k〉 = 1√
N
∑
xy

|y〉〈y|K̂|x〉eik·x = 2K
[
p+

d∑
i=1

cos(ki)

]
︸ ︷︷ ︸

≡1/∆0(k)>0

|k〉,

which gives Ĵ |k〉 = ∆0(k)|k〉. Jij ∼ e−κr (note).
p should be larger than d.
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For later purpose, we calculate∑
x

Kx,y =
∑

x
〈x|K̂|y〉 =

√
N〈k = 0|K̂|y〉 = 2K(p+ d),

which is independent of y. Accordingly, we also get

∑
x

Jx,y =
1

2K(p+ d) =
T

nT0
, T0 ≡ 2J(p+ d)

nkB
.

For small k, ∆0(k) ≈ T
nT0

+ k2/α̃ with α̃ = 4K(p+ d)2.
determinant of K

1
N ln detK = ln(2K) +

1
N
∑

k
ln

[
p+

∑
i

cos(ki)

]
︸ ︷︷ ︸

finite and independent of T
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Observables in terms of continuous fields

We neglect constant.
“effective” Hamiltonian H̃ = H̃0 + VI with

H̃0 ≡ 1
2

(
Jij −

1
nδij

)
ϕi · ϕj, VI =

λ

4! (ϕi · ϕi)
2

partition function

Z =

∫
[dϕ] exp

[
−H̃0 − VI + Jijhi · ϕj −

1
2Jijhi · hj

]
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order parameter for uniform external field (hi = h, ∀i)

1
N
∑

i
〈sαi 〉 =

1
N
∂ lnZ
∂hα

=
1
N
∑

ij

(
Jij
〈
ϕαj
〉
− Jijhα

)
= ∆0(0)

1
N
∑

j

〈
ϕαj
〉
−∆0(0)hα

where sαi is the α-th component of si and so on.
Susceptibility

kBTχαβ =
1
N
∂2 lnZ
∂hα∂hβ

=
∆0(0)2

N
∑

ij

(
〈ϕαi ϕ

β
j 〉 − 〈ϕαi 〉〈ϕ

β
j 〉
)
−∆0(0)δαβ
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Discussion

Since ∆0(0) = T/(nT0), divergence of χ originates only from
fluctuations of ϕ. Hence we will regard ϕ as a continuous spin
vector.
Since Jijhi · hj = Nh2∆0(0) for uniform hi and we are mostly
interested in the case with h = 0, we will drop this term from
now on. We rewrite the partition function as

Z =

∫
[dϕ] exp

[
−H̃0 − VI + hi · ϕi

]
.

H̃에서 모든 field ϕi가 값이 같은 아주 작은 상수라면,

H̃
N ≈ 1

2aϕ2 +
λ

4! |ϕ|
4.

Landau free energy를 얻는다. 이 때, a ∝ (T − T0)이고 λ > 0이다.

57



‘Steepest descent method’ and the mean field theory

saddle point analysis: to find the minimum of H̃ − hi · ϕi.

∂H̃
∂ϕi

=
∑

j

(
Jij −

1
nδij

)
ϕj +

λ

3! (ϕi · ϕi)
2ϕi = hi.

homogeneous solution for h = 0 (set ϕi = (ϕ0, 0, . . . , 0))

0 =

(
T

nT0
− 1

n

)
ϕ0 +

λϕ3
0

3!

ϕ0 ∝

{
(T0 − T)1/2, T < T0

0, T > T0

Same order parameter exponent as the Landau theory.
But, critical point T0 depends on p? Something is wrong!
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Failure of the ‘steepest descent’ method

Fully connected graph에서 본 것처럼 “최솟값”이 free energy가
된다는 아이디어는 틀린 것은 아니다. 문제는 잘못된 함수의

최솟값을 찾았기 때문에 발생한다.

Partition function을 다시 보자.

Z =
∑

C
e−βH(C) =

∑
C

∑
E

e−βEδ[E − H(C)]

=
∑

E
e−βE

∑
C
δ[E − H(C)]︸ ︷︷ ︸

=Ω(E)=eS(E)/kB

=
∑

E
e−β[E−TS(E)] =

∑
E

e−βF(E)

= e−βFmin × O(N) ⇒ lim
N→∞

−kBT lnZ
N = lim

N→∞

Fmin
N = f(T)
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즉, (적분) 변수의 개수가 N이면 변수 개수의 효과, 즉, 엔트로피를

반드시 고려해야 한다.

앞의 ‘saddple point’ 방식, 즉, Landau theory는 entropy를
무시했기 때문에 틀린 결과를 준다.

이 현상을 ‘fluctuation’을 무시해서 발생한 문제라고 이야기한다.

하지만, Landau theory가 맞는 예측을 하는 경우도 있다 (upper
critical dimension). 이에 대한 이해는 RG가 제공한다.
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momentum space representation of H̃0

Fourier transform

ϕx ≡ 1
N
∑

k
eik·xφk, φk =

∑
x

e−ik·xϕx = φ∗
−k

Although <φk, =φk are actually independent (integral)
variables, we can formally treat φk and φ−k as independent.
H̃0 in the momentum space (ℏ = 1)

1
2
∑
x,y

Jx,yϕx · ϕy =
1
2
∑
k,k′

φkφk′
1

N2

∑
x,y

eik·x+k′·yJx,y

=
1

2N
∑
k,k′

φkφk′〈−k′|Ĵ |k〉 = 1
2N
∑

k
|φk|2∆0(k)
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(naive) continuum limit ofH0

N → ∞ (thermodynamic limit) : k is ‘almost’ continuous.
만약 φk가 적분가능한 함수(Lesbegue measurable function)라
믿으면,

2H̃0 =
1
N
∑

k
∆0(k)|φk|2

?
≈
∫ π

−π

dk
(2π)d∆0(k)|φk|2

=

∫ Λ

−Λ

ddκ

(2π)d
∆0(a0κ)

a2
0

|a0φa0κ|
2
=

∫ Λ ddk
(2π)d∆(k)|φ(k)|2

a0 : lattice constant, Λ = π/a0 : cutoff, rename: κ = k/a0 7→ k

∆(k) ≡ ∆0(a0k)
a2

0
, φ(k) ≡ a1+d/2

0 φa0k

∆(k) ≈ r + αk2

62



continuum fields in real space

ϕx =
1
N
∑

k
eik·xφk ≈

∫ π

−π

ddk
(2π)d eik·xφk

= ad/2
0

∫ Λ

−Λ

ddk
(2π)d eik·zφa0k = a−1+d/2

0

∫ Λ

−Λ

ddk
(2π)d eik·zφ(k)

Defining ϕ(x) = a1−d/2
0 ϕx/a0 (x 7→ x/a0), we get

ϕ(x) =
∫ Λ

−Λ

ddk
(2π)d eik·xφ(k), φ(k) =

∫ ∞

−∞
ddxe−ik·xϕ(x)

φ(k)의 차원 [φ(k)] = [a1+d/2
0 ] = [Λ−1−d/2]

.
= −1 − d

2
ϕ(x)의 차원 [ϕ(x)] = [a1−d/2

0 ] = [Λ−1+d/2]
.
= −1 +

d
2 .
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∆(k) = r + α2k2인 경우,

H̃0 =

∫ dk
(2π)d

1
2
(
α2k2 + r

)
|φ(k)|2 =

1
2

∫
rϕ2 + α2 |∇ϕ|2 dx,

where we have assumed ϕ(x) → 0 as |x| → ∞ and

|∇ϕ|2 ≡
n∑

ℓ=1

(
∇ϕ(α)

)2
.

미분을 진짜 미분으로 생각하지 말고 discrete difference를
형식적으로 쓴 기호라고 생각하는 것이 더 정확하다.
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Field theory

effective Hamiltonian space-continuous fields

H = HG + VI,

HG =
1
2

∫
dx
[
α2 |∇ϕ(x)|2 + µ2|ϕ(x)|2

]
, VI =

λ

4!

∫
dx(|ϕ(x)|2)2,

µ2 ∝ T − T0. µ2은 양수, 음수 모두 될 수 있지만, 양자장론의 mass
에 해당하는 부분(E2 = p2 + m2)이라 제곱을 포함하고 쓰고 있다.

λ = 0인 경우를 Gaussian theory라고 부른다. (subscript G)

나중에 보겠지만, ϕ6, ϕ8, · · · 는 고비행동에 영향을 주지 않는다.

(물론, 이런 항들이 들어가면 critical point는 달라진다.)

effective Hamiltonian H를 Ginzburg-Landau-Wilson free energy
functional이라고도 부른다.
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Generating functional Z[J]

partition function

Z[J] ≡
∫

Dϕ exp

[
−H +

∫
J(x) · ϕ(x)ddx

]
,

H =

∫
ddx

[
1
2α

2 |∇ϕ|2 + 1
2µ

2|ϕ|2 + λ

4! (|ϕ|
2)2
]

J (source라고도 부른다)는 external magnetic field라는 물리적인

의미도 있지만, 계산을 용이하게 하도록 도입되기도 한다.

Z[J]를 generating functional이라고도 부른다.

Dϕ는 Nn개 변수적분 후 N → ∞를 취할 것이라는 기호로 간주하는

것이 마음이 편하다. (아니면 잘 정의된 measure가 필요)

α, µ, λ를 bare parameter라 부른다.
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Discussion about cutoff

고비행동은 large scale (or small momentum) physics이므로, Λ가

영향을 주지않는 이론이 필요하다.

Λ2 =
√

dΛ라고 하면, 원래 적분구간은 반지름이 각각 Λ,
√

dΛ인 두

구 사이에 있는데, 만약 우리의 이론이 Λ-independent하다면,

hypercube에서의 적분이나 구에서의 적분이나 같은 결과를 줄

것이다. 따라서, 이후에는 k의 적분구간은 반지름 Λ인 d 차원 구로

변경하여 계산할 것이다.

최종적으로 Λ → ∞ 극한을 취할 것이다. 이 극한이 말이 되는 결과를

주면, “continuum theory”가 존재한다고 이야기한다 (RG).
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차원 분석 (Dimensional analysis): canonical (engineering) di-
mension

H는 차원이 없는 수이어야만 한다. [H] = 0
α는 적분변수의 치환으로 항상 차원이 없는 수로 둘 수 있다. [α] = 0
[µ2] = [∇2] = 2.

ϕ(x)의 차원: 0 =

[∫
ddx|∇ϕ|2

]
= −d + 2 + 2[ϕ] ⇒ [ϕ] =

d
2 − 1

source J(x)의 차원: 0 = −d + [ϕ] + [J(x)] → [J(x)] = 1 +
d
2

λ의 차원 : 0 = −d + [λ] + 4[ϕ] → [λ] = 4 − d.
momentum space field φ(k)의 차원

[φ(k)] =
[∫

ddxe−ik·xϕ(x)
]
= −d − 1 +

d
2 = −d

2 − 1

λs,r
∫

ddx(∇)sϕr의 항이 있는 경우, [λs,r] = d + r − 1
2 rd − 2s

68



Critical behavior and critical exponents

critical exponents β, γ (h = 0)

Behavior of correlation functions Gc(r)
▶ At the critical point, Gc(r) ∼ r−(d−2+η) (scale invariance)
▶ η is called the anomalous dimension.
▶ For T ̸= Tc, Gc(r) ∼ exp(−r/ξ) with ξ ∼ |T − Tc|−ν .
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Critical behavior and critical exponents (cont.)

exponent α (diverging energy fluctuation)

cv ∼ |T − Tc|−α

exponent δ (at the critical point)

m ∼ |h|δsign(h)

comparison of exponents
α β γ δ η ν

mean field 0 1
2 1 3 0 1

2
2D Ising 0(log) 1

8
7
4 5 1

4 1

mean field가 틀린 이유는? RG will explain.
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차원분석과 critical exponents

mean magnetization 〈ϕ〉
▶ ⟨ϕ⟩은 µ와 λ의 함수.

▶ ϕ의 차원은 −1 + d/2이므로, ⟨ϕ⟩ ∝ 1/
√
λ.

▶ √
λϕ의 차원은 1이므로 µ와 비례

▶ µ2 = T − T0이므로 ⟨ϕ⟩ ∝
√

|T − T0| → β = 1
2

correlation length ξ
▶ ξ의 차원은 −1이므로 이 차원을 만들 수 있는 조합은 µ−1.

▶ ξ ∝ |T − T0|−1/2 → ν = 1
2

equation of state at the critical point
▶ J는 λ와 ϕ의 함수.

▶ [J/ϕ] = 2이고 [λϕ2] = 2.
▶ 따라서 가능한 조합은 J ∝ ϕ3 → δ = 3
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차원분석과 critical exponents (cont.)

susceptibility χ ∝ dϕ
dJ

▶ χ의 차원은 [ϕ]− [J] = −2.
▶ µ, λ로차원 −2를만들수있는조합은 µ−2 → χ ∝ |T−T0|−1, γ = 1.

correlation function Gc(x) = 〈ϕ(x)ϕ(0)〉 at the critical point
▶ G0는 x, λ, ⟨ϕ⟩의 함수 (⟨ϕ⟩ = 0 at the critical point).
▶ λ는 ⟨ϕ⟩와 곱의 형태로만 등장하므로 G0는 x만의 함수

▶ [G0] = d − 2이므로 G0 ∝ 1/rd−2 → η = 0
▶ η ̸= 0은 어떻게 가능한가? (혹은 effective Hamiltonian은 critical

behavior를 제대로 설명할 수 없나?)

mean field theory는 단순 차원비교와 consistent하다.

specific heat cv는 차원분석만으로는 알 수 없다 (discontinuity).
굳이 하면, cv는 H의 fluctuation이고 [H] = 0이므로, α = 0.

72



이후에는

n = 1인 경우만 논의한다 (Ising model)
momentum space만 고려하겠다.

HG =

∫
k

1
2 (α

2k2 + µ2)φ−kφk =:

∫
k

1
2
|φk|2

∆(k)2

VI =
λ

4!

∫
1,2,3,4

φ1φ2φ3φ4δ(1 + 2 + 3 + 4)

notation∫
x
:=

∫
ddx, φk :=

∫
x

eik·xϕ(x), ϕ(x) := ϕ(x), φi := φki ,∫
k
:=

∫ Λ ddk
(2π)d , δ(1 + 2 + · · · ) = (2π)dδ(k1 + k2 + · · · )
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Gaussian theory with source J

Gaussian theory

ZG[J] =
∫

Dϕ exp
(
−HG +

∫
k

J−kφk

)
, HG =

∫
k

1
2
|φk|2

∆(k)2

Gaussian theory에서는 µ2 > 0이어야만 됨.

Average
〈O[φ]〉 = 1

ZG[0]

∫
DϕO[φ] exp (−HG)

In particular,

〈φk1 · · ·φkm〉 =
1

ZG[0] (2π)
dm δ

δJ−k1

· · · δ

δJ−km

ZG[J]
∣∣∣∣
J=0

위 평균계산 방법은 일반적인 경우에도 적용된다.
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치환 적분: φk 7→ φk + Jk∆(k)

ZG[J] =
∫

Dϕ exp
{
−1

2

∫
k

ϕ(−k)ϕ(k)
∆(k)

}
exp

[
1
2

∫
k
∆(k)|Jk|2

]
= ZG[0] exp

[
1
2

∫
12

∆(k1)J−1J−2δ(1 + 2)
]
.

Correlation function

〈φ1φ2〉 :=
(2π)2dδ2

δJ−1δJ−2
exp

[
1
2

∫
34

∆(k3)J−3J−4δ(1 + 2)
]
= ∆(k1)δ(1+2)

보통 〈φkφ−k〉 = ∆(k)라 쓴다.

Fourier transform of ∆ (note참고)

∆(x, y) =
∫

k

eik(x−y)

α2k2 + µ2 ∼ e−µ|x−y|/α

|x − y|(d−1)/2

Gaussian theory는 공간이 discrete한 경우에도 똑같이 적용된다.

(continuum limit가 잘 정의된다.)
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ϕ4 theory

Perturbative expansion (Jφ는 적분을 간단하게 쓴 것임)

Z[J] =
∫

Dϕe−HG−VI(φ)+Jφ =

∫
Dϕe−VI(φ)e−HG+Jφ

=

∫
Dϕ

∞∑
m=0

1
m!

(−VI)
me−HG+Jφ

?
=

∞∑
m=0

1
m!

∫
Dϕ(−VI)

me−HG+Jφ

=

∞∑
m=0

1
m!

∫
Dϕ
(
−VI[

δ

δJ ]
)m

e−HG+Jφ

= exp

[
−VI

(
δ

δJ

)]
ZG[J]

Dϕ의 문제를 피하기 위하여 위 식을 field theory의 정의라고

간주하기도 한다.
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Does the series converge?

for example, zero dimensional case

Z(λ) ≡
∫ ∞

−∞

dx√
2π

e−x2/2−λx4/4 ?
=

∞∑
n=0

(−λ)nZn,

Zn =
1
4n

∫ dx√
2π

e−x2/2x4n =
(4n)!

n!16n(2n)! ∼
1√
nπ

(
4n
e

)n

수렴반경은 0. The series for nonzero λ diverges!?

The divergent series are the invention of the devil, and it is
a shame to base on them any demonstration whatsoever.
By using them, one may draw any conclusion he pleases
and that is why these series have produced so many fal-
lacies and so many paradoxes. Niels Henrik Abel

Do you know 1 + 2 + 3 + · · · !
= − 1
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perturbation이론은 틀렸나?

부분합과의 오차 RM 고려

RM ≡

∣∣∣∣∣Z(λ)−
M∑

n=0
(−λ)nZn

∣∣∣∣∣
=

∫ dx√
2π

e−x2/2

∣∣∣∣∣e−λx4/4 −
M∑

n=0

1
n!

(
−λx4

4

)n∣∣∣∣∣
Taylor전개의 성질∣∣∣∣∣f(x)−

M∑
n=0

f(n)(0)
n! xn

∣∣∣∣∣ =
∣∣∣∣∫ x

0

(x − t)M

M!
f(M+1)(t)dt

∣∣∣∣ ≤ KM
xM+1

(M + 1)! .

KM = sup
0≤t≤x

∣∣∣f(M+1)(t)
∣∣∣.
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perturbation이론은 틀렸나? (cont.)

e−x ≤ 1이므로,

RM ≤
∫ dx√

2π
e−x2/2

(M + 1)!

(
λx4

4

)M+1

= λM+1ZM+1 ∼ 1√
Mπ

(
4λM

e

)M

4λM ≈ 1일 때 RM ≈ e−1/(4λ) (minimum).

M이 엄청 크지 않으면 괜찮다. (asymptotic series가 convergent
series보다 많은 경우 적은 노력으로 더 좋은 결과를 준다.)

Stirling’s formula, steepest descent method,
Rayleigh-Schrödinger섭동론 등 물리의 대부분의 근사는

convergent series가 아니고 asymptotic series를 다룬다.
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Momentum Shell RG: idea

integration over φk in a momentum shell (cf: decimation)
rescale and compare to the original theory
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decimation (shell integration)

Partition function

Z =

∫
Dφe−H =

∫ <

Dφ
[∫ >

Dφe−H
]

=

∫ <

Dφe−H<
G

[∫ >

Dφe−H>
G −VI

]
︸ ︷︷ ︸

decimation

.

▶ ∫ > : integral over the field in the shell
▶ H>

G : terms with large momentum (k > Λ/b)
▶ H<

G : terms with small momentum (k < Λ/b)
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Perturbative Expansion

Shell integration ∫ >

Dφe−H>
G −VI = Z0〈e−VI〉,

where 〈O〉 = 1
Z0

∫ >

DφOe−H>
G ,Z0 =

∫ >

Dφe−H>
G

Z
Z0

=

∫ <

Dφ exp
(
−H<

G + ln〈e−VI〉
)

≈
∫ <

Dφ exp

[
−H<

G − 〈VI〉+
1
2
(
〈V2

I 〉 − 〈VI〉2)+ · · ·
]

cf: cumulant expansion
All terms like ϕ6, ϕ8 will appear.
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calculation of 〈VI〉

이제부터 α = 1, λ/4! = u라고 하자.

HG =

∫
k

1
2 (k

2 + µ2)|φk|2,

VI = u
∫

1234
φk1φk2φk3φk4δ(1 + 2 + 3 + 4)

φk = φ>
k + φ<

k 라 쓰면 (φ>
k ≡ φkΘ(k − Λ/b))

u−1〈VI〉 =
∫ < 4∏

i=1
φ<

ki
δ(1 + 2 + 3 + 4)

+ 6
∫ <

12
φ<

1 φ
<
2

∫ >

34

〈
φ>

3 φ
>
4
〉
δ(1 + 2 + 3 + 4)︸ ︷︷ ︸

?=
∫ <

k |φk|2
∫ >

p 〈|φp|2〉

+A(b,Λ)
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calculation of 〈VI〉 (cont.)

평균 계산하기 (b = eδ ≈ 1 + δ, δ � 1)∫ >

p
〈|φ>

p |2〉 = Sd−1
(2π)d

∫ Λ

Λ/b

pd−1

p2 + µ2 dp =
Sd−1
(2π)dΛ

d−2
∫ 1

1/b

xd−1

x2 + µ2/Λ2 dx

≈ Λ2 Sd−1
(2π)dΛ

d−4 δ

1 + r ≡ Λ2 Cδ
1 + r

where r = µ2/Λ2, Sd−1 is the surface area of (d − 1) shpere.
정리하면

H<
0 + 〈VI〉 =

1
2

∫ <

k

(
k2 + Λ2r + Λ2 12uCδ

1 + r

)
|φk|2 + u

∫ <

ϕ4 + A

A는 free energy에 영향을 주지만, order parameter에는 영향을

주지 않는다.
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calculation of 〈V2
I 〉c: Feynman diagram

second cumulant 〈V2
I 〉 − 〈VI〉2.

Diagramatic representation
▶ VI을 1개의 꼭짓점과 4개의 선분이 있는 diagram으로 표현한다.

▶ 큰 momentum에 해당하는 선분끼리 연결하되, 두 꼭짓점은 연결되는

diagram만 그린다.

▶ 경우의 수를 잘 계산한다.

▶ 연결된 선분에 ∆(k)를 부여하고, loop이 생기면
∫ >

k 를 한다.
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calculation of 〈V2
I 〉c: Feynman diagram (cont.)

만들어지는 diagram들

x1 z1 x2

z2

x1 x2z1 z2

왼쪽 두 개는 r에 영향을 주지만, higher order이다. (two-loop
order)
맨 오른쪽에 있는 diagram이 u에 영향을 준다.
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Step 2: rescale

shell integration의 결과

Z ∝
∫ <

Dϕe−H′
0−V′

I−...,

r̃ = r + 12uC
1 + r δ, ũ = u − 36u2C

(1 + r)2 δ

rescale
▶ k = κ/b라고 치환하면 적분구간이 Λ까지로 다시 돌아간다.∫ <

k
= b−d

∫
κ

, k2 = b−2κ2

▶ φk = b1+d/2ϕκ 치환하면 원래 형태로 돌아간다.∫ <

k
k2|φk|2 =

∫
κ

κ2|ϕκ|2
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Step 2: rescale (cont.)

▶ 이 경우 r̃ ũ는 각각 b2, b4−d가 곱해진다. ([r] = 2, [u] = 4 − d)
▶ 이제 H의 형태는 유지되고 r, u자리에 r′, u′으로만 바뀌어 있다.

r′ = b2r̃ ≈ (1 + 2δ)
(

r + 12Cu
1 + r δ

)
= r + δ

[
2r + 12Cu

1 + r

]
,

u′ = bεũ = (1 + εδ)

(
u − 36Cu2

(1 + r)2 δ

)
= u + u

[
ε− 36U

(1 + r)2

]
δ,

where U = Cu and ε = 4 − d.
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RG flow equation

RG flow equation and fixed points

dr
dδ = 2r + 12U

1 + r = 0, dU
dδ = εU − 36U2

(1 + r)2 = 0.

There are two fixed points. (r∗,U∗) = (0, 0) and (−ε/6, ε/36),
where we assume ε� 1.
(linear) stability analysis around the fixed points

∂r′
∂r = (1 + 2δ)− 12U∗

(1 + r∗)2 δ ≈ b2−12U∗
,

∂r′
∂U = 12δ ≈ 0, ∂U′

∂r = O(U∗)2,

∂U′

∂U = 1 + εδ − 72U∗δ ≈ bε−72U∗
.
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RG flow equation (cont.)

bare parameter가 r0, u0이었다면,

r(b)− r∗ = b2−12U∗
(r0 − r∗), u(b)− u∗ = bε−72U∗

(u0 − u∗)

▶ For (0, 0) (Gaussian fixed point)

r(b)− r∗ = b2(r0 − r∗), u(b)− u∗ = bε(u0 − u∗)

▶ For nontrivial fixed point,

r(b)− r∗ = b2−ε/3(r0 − r∗), u(b)− u∗ = b−ε(u0 − u∗)
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Discussion

r∗ is always unstable (강자성 상태, 상자성 상태)

U∗ = 0 is stable (unstable) if d > 4 (d < 4)
U∗ = ε/36 is stable (unstable) if d < 4 (d > 4)
For d > 4, U∗ = 0 is the stable fixed point and the theory is
identical to the Gaussian theory (or mean field theory).
For d < 4, we have nontrivial fixed point and, accordingly,
non-mean-field critical behavior.
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Momentum shell integration is not elegant

1은 작고, 2, 3은 큰 momentum인 경우에
∫ >

23 δ(1 + 2 + 3) 의 적분

구간은 무엇인가?

KPZ equation을 momentum-shell RG로 분석하면 다음의 식이

나온다.

I :=
∫ >

12

k · p1p1 · p2
p2

1(p2
1 + p2

2)
δ(k + p1 + p2) ≈ Ak2 + · · ·

보통 p1 = p − 1
2 k, p2 = −p − 1

2 k라 한 후, k에 대하여 Taylor
전개하여 |p| > Λ/b에 대하여 적분을 한다
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그런데, 만약 p1 = p − ak, p2 = −p − (1 − a)k라 하면

I = −
∫ >

p

(p · k − ak2)(p2 + (1 − 2a)p · k − a(1 − a)k2)

(p − ak)2[(p − ak)2 + (p + (1 − a)k)2]

≈ −a
2

(
2
∫ > (p · k)2

p4 − k2
∫ > 1

p2

)
이 되어 a depend한 결과를 준다!

a = 1
2 를 선택하면 맞는 답을 준다. 그런데 왜?

섭동의 차수가 올라가면 계산은 훨씬 더 복잡해진다. momentum
shell integration은 잘해야 2차 섭동항까지만 가능하다고 사람들이

이야기한다.

Field theoretical renormalization group은 애초에 적분구간에

cutoff가 없어서 이런 문제가 발생하지 않는다. (물론 infinity를
처리해야하는 문제가 발생한다.)
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Epilogue : Fokker-Planck
equation



Imaginary time Schrödinger equation

Imaginary time Schrödinger equation (ℏ = 1)

iℏ∂Ψ
∂t = Ĥ(p̂, q̂)Ψ it/ℏ 7→β−−−−−→ −∂Ψ

∂β
= Ĥ(p̂, q̂)Ψ

Fokker-Planck equation

∂P(q, t)
∂t = − ∂

∂q [a(q)P] + 1
2
∂2

∂q2 [b(q)P] = −Ĥ(p̂, q̂)P

Ĥ =
p̂2

2 b(q̂) + ip̂a(q̂), p̂ = −i ∂
∂q , [q̂, p̂] = i
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formal solution

Ψ(q, t) = e−ĤtΨ(q, 0) =: Û(t, 0)Ψ(q, 0).

▶ In statmech, Ĥ is a Hermitian.
▶ In stochastic processes, Ĥ needs not be a Hermitian.

Propagator and partition function

〈q′|e−Ĥt|q〉, Z = Tr e−βĤ =

∫
dq〈q|e−βĤ|q〉

Group property of the time evolution operator Û

Û(t, 0) = Û(tn, tn−1)Û(tn−1, tn−2) · · · Û(t1, t0),

where t0 = 0 and ti = t0 + nε with ε = t/n.
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Path Integral for the FP equation

Assume ε≪ 1 (n → ∞)

〈q|Û(ti, ti−1)|q′〉 ≈ δ(q − q′)− ε〈q|Ĥ|q′〉

=
1

2π

∫
dpeip(q−q′) − ε

∫
dp〈q|p〉〈p|Ĥ|q′〉

=
1

2π

∫
dp exp ip(q − q′)− 1

2π ε
∫

dpeiqp
(

p2

2 b(q′) + ipa(q′)
)
〈p|q′〉

=
1

2π

∫
dp exp

[
ip(q − q′)− ε

(
p2

2 b(q′) + ipa(q′)
)]
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Full propagtor for finite t

〈qn|U(t, 0)|q0〉 = 〈qn|U(tn, tn−1U(tn−1, tn−2) · · ·U(t1, t0)|q0〉

=

∫
dqn−1 · · · dq1〈qn|U(tn, tn−1|qn−1〉〈qn−1| · · · |q1〉〈q1|U(t0, t0)|q0〉

= lim
n→∞

1
(2π)n

∫
dpn · · · dp1dqn−1 · · · dq1×

× exp

 n∑
j=1

{
ipj(qj − qj−1)− ε

(
p2

j
2 b(qj−1) + ipja(qj−1)

)}
naive continuum limit and path integral

n∑
j=1

{
iεpj

qj − qj−1
ε

− ε

(
p2

j
2 b(qj−1) + ipja(qj−1)

)}

7→
∫ d

0
ip(t)q̇(t)− H(p(t), q(t))dt
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path probability (density)

P(q(τ)) :=
∫

[Dp] exp
[∫ t

0
ip(τ)q̇(τ)− H(p(τ), q(τ))dτ

]
path probability ratio(?)

P(q(τ))
P(q(t − τ))
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