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Callen (1984), Ch 9

@ Doughnut shape tube and a movable piston

mg sin 6

PA

ideal gas of N monatomic molecules on each side: PV = NkgT
T: Temperature of heat reservoir

m: piston mass

R : radius of the tube.

A : cross sectional area of the tube.

P, (Pr) : pressure of the gas on the left (right) hand side

vVVYyVYVYYVYYy



Mechanical solution

@ Pressure (v:= V/Nvolume per particle)

k’BT g AR /m
Pop= "2~ with =L
L,R VLR wit UL,R N (2 9)

@ Equilibrium position 6. of the piston

Rm? 462
PrA = PrLA+ mgsinf - = (g = ;n]gk;TT (1 — 7r26> sind,
@ 0, = 0is always a (trivial) solution.
@ Is nonzero 6, possible?

42T 4,

1 _ =
w2 T,sinf,’

where T, := mgRr?/(8Nkg). (J/ ()/K) = K)
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@ Condition for the existence of a nontrivial solution

T U
72 T.sinf =~ T,

@ T>T.:0,=0isthe unique solution
@ T < T.:two symmetric nontrivial solutions (+ trivial one)
@ T. isthe critical point.

@ When T < T,, what is the true equilibrium solution among
three solutions? stability analysis with free energy



Thermodynamic solution

@ Total free energy for a fixed’ macroscopic condition 6
F(0) = —NkTlnvg — NkTln vy, + mgRcos 0 + Fo(T, N)

@ Free energy minimum condition (freely moving piston)

F NkgT NkgT
87:0:> B-AR- —E AR — mgRsinf =0
00 UR urL
0*F NkgT NkgT
- - s 6
962 >0= @22 + O+ 7/2) mgR cos @ > 0

@ Stability of the trivial solution ., = 0 = ?T —1>0.

@ Order parameter M := v (0.) — vr(0.) = 2ARH./N.
> T>T.: M=0
> T<Tc: M#0



@ Free energy as a function of T'and ¢
F(T,0)
N\

At T= T,, minimum is very flat. Large fluctuation.



Landau theory : small ¢ expansion

@ Approximation around T, (T := T.(1 + t) with || < 1).

. T 0. 1 4
Smee:fl_‘if :>96—69‘Zz(1+t) (98+7r29§)

4 1] .
W~ |[(1+8)— +=|6°
@+

| S —

> t>0:0.=0
> t<0and |t < 1: 0]~ +/—t/C~ £|t|*/?
@ tis also called a reduced temperature.
@ Can we formulate a theory to predict which will happen,
0, =+/—tor —/—t?

@ No! Spontaneous Symmetry Breaking (SSB)



If we write [M| ~ |¢|7, then 8 = 1.

3 is called the order parameter (critical) exponent.
Mathematically speaking,
o M|
Bi= ltlT%l In(—1)"

Should not be confused with inverse temperature 3
In general, M has corrections to scaling

Even if there is a logarithmic corrections, /3 is defined in the
same way

Example

1 1
M= x [log|d]* x (1+at®?) = fim 2M_1
—— ——— [t|—0 ln|t\ 2

log correction  corrections to scaling



@ Observation: When T'= T, the minimum of the free energy is
found for small |6].

@ Taylor expansion
6. T) == = (0, )
b U N b

= —kgTln <1 — 4292) +

8
=T t02+ 094}+freg( T)

mgR

e (cos 0 — 1) + 4(T)

~ kg

@ Interms of M := v;(0) — vr(0)
Fsing(M, T) = 7atM2 o M4

where ¢ > 0and X > 0.

@ The above fyg is also known as Landau free energy.

n



@ Free energy at equilibrium
e I'>T,
fe(T) = freg(T)

e T'< T,
Fo(T) = fing(M ~ V=1, T) + freg(T) = b[t/*/2 + freg(T)
foe rol 223t

Ehrenfest classification2 f, S O|&3HC},
Landau theory= fE O|23ICt,
feo, f 25 free energy (density) 2t 2L =5l Z| 2}

AR %2 0 (M) DA| order parameter2} 2L 0] HA|
2| =35l 2| 2t

12



Idea of the Landau theory

@ Singular and regular parts are separated. Only the singular part
is under consideration.

@ Free energy (density) fis an analytic function of (macroscopic)
0.

@ Approximate free energy should have the same symmetry as
the original f.

f=0,T) =6, T)
(even function of 9)
@ Coefficient of M? is proportionalto 7 — T..
@ Coefficient of M* is positive (due to stability).

13



What if the table is tilted by small angle »? In particular, check
(|t < 1)
OM(h)
oh h=0

~ |47

Since h breaks the symmetry, it is called a symmetry-breaking field.
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@ Hamiltonian with periodic boundary conditions

Hlsmg __JZSSJ HZS’L

(4,5

@ Remarks
> s: (ordered) set of all Nspins s;. s; = £1
We only consider the ferromagnetic Ising model (J > 0)
(4,j)  sum over nearest neighbor pairs
H : external magnetic field (symmetry breaking field)
When H = 0, fllsing(s) = fllsing(_s)
When H = 0, symmetric two ground states: s=1or s= —1

vVVvyvYyyvyy



Partition function and thermodynamics

@ “Landau” free energy

V= Z e —BHsing Z Z K} (]1\72 5 — M) e—ﬁHwing

s —1<M<1

- Z [Z‘S (;Z 8 — M) e_BH'S'ng] —. Z ¢~ NBJlan(M, T,H)
M L s ; -

where fian(M, T, H) = —kiTl Z(s (NZ i — ) o~ BHising(s)

@ Arandom variable Mis also called an “order parameter”
@ Note that P(M = m) = ¢~ Nofan(m. T.H) / 7

@ “The” order paramter M = lim (M) = lim mP(M = m)
N—oo N—oo -~



@ If fian(M, T, H) has (the unique) minimum at M = my (T, H), then

e~ NBf(mo. T.H) < 7 < No=NBf(mo, T.H)

In N kT
ifLan(%a T7H) - kBTT < _BTIHZS fLaﬂ(mOa T7H)

Therefore,

T
AT, H) :=— lim kian:f(mO, T, H)
N—oo N
@ Note that my = limy_ oo (M) = M.
@ 29| AH|AtO| free energy minimumO| W AE} 7| EICH= 9|O0|O|C},

@ my is actually not unique for T < T, (cf. the Toy model).



Landau theory for the Ising model on a complete graph

@ What is fia,? Let us first resort to the Landau theory for H= 0.

» fian(—M, T) = fian(M, T) : even function of M
» Numerical observation : around 7 = T, mo is small.

@ Let’s be brave and use the Landau theory! (neglect the regular
part)

1 o A
flan = gatM + EAM4

@ Now the repeat of the calculation in the Toy model gives the
solution.

@ It does work for a certain system: all-to-all interaction

19



@ all-to-all interaction with J+— J/N. Js? = Jis included.

1
Hising = TON Z 8i8j — HZ §; = (2JM2 + HM)
i,j=1
N 2
—NBfian — —NB(—JM?/2— HM)
o (s M)/2> ‘ |

fLan:—;JMQ—HM—M1n< ( N )

¥ v+ M2
1 \+M. 1+M 1-M. 1-M
~—SJM — HM— Thg [t 222 In
5 5 5 5 5

ksT
~ —kpTln2 — HM + — (kBT HM + f2M4

@ Landau theory works. We have only to find the minimum of fa,.

20



@ Let’s rewrite the Hamiltonian as (assume H = 0)

1 1 1 1
Hlsing = —§JZ Si Z 8§ = _§stlm Z S5 = _§JZSIM7
i JEN; q JEN; g
——
=:M,
where N is the index set of the nearest neighbors of site i with
cardinality || (translationally invariant) and J = J|N/|
@ If M}~ M in typical configurations, then Hsng ~ — 3 J NM?
@ By (abusing) the law of large numbers, one would expect
M, ~ Mwhen |N| is large. Accordingly, when |\ is small, the
above approximation is not likely to work.
@ Then how small is small? It turns out that the embedding
dimensions are more important than |\ itself (see Sec. 3).

21



Exercise (Project 1-1)

@ Consider the following 1-D “Ising model” with PBC (sy.; = s;).

N

J
5 Z 5i(Siv1 + Sit2 + Si1 + Si—2),
i=1

Hy = —

which has |V| = 4 just like the 2D Ising model.
@ Its free energy density is as follows. (K := 3.))

1
1) = ks T lim < InZ

€2K+1+\/(€2K+1)(62K_3+4€_2K)
2

= —kgTlIn

which is analytic; hence no phase transition. Check it.
(Mathematica would be helpful)

@ If H+# 0, the calculation would be a nightmare, but try it.

22



Further discussion

If
j+n
1Y Y
=1 Jj=i+1

with large but fixed n (for example, n = 10'°), do we expect a phase
transition? Consider the Ferron-Probenius theorem.

23



Beyond the Landau theory

@ How good is the Landau theory.
> Landau theory predicts 3 = 1.
> Onsager solution for the 2D Ising model gives 3 = ;.
> Numerical studies for the 3D Ising model have concluded 3 < 1.

@ Then, why do we care about the Landau theory? First because it

works sometimes (when?) and second because it is insightful.

@ Can we develop a general “approximation” scheme that gives a
plausible result? This is all about the renormalization group
(RG).

@ We want to come up with an effective model.

» Block spin : similar degrees of freedom with similar Hamiltonian
(Sec. 2)

» Field theory : an effective model with (uncontrained) continuous
degrees of freedom (Sec. 3)

2%



217} A|17]122 A2 Project (?)

@ Find the mathematical formual of the “exact” fian in one
dimension (numerically, maybe?)

@ Can you find fia, for the critical 2-D Ising model (numerically)?
1

o Ak HE 2L

25
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27| (8312]7)

27



source : https://www.scientificamerican.com/article/can-you-drink-
saturns-rings/

28



Bspinsin a block

29



@ Fix atile and define a block spin transformation (i : block index)

T(s: si1,-..,5,8) suchthat  T(s;:{s;}) =1
N———

=:{Si} S‘;:i
@ Example 1: decimation (blue blocks) 7(s; : {s;}) = d(s}, s:1)
@ Example 2: majority rule (pink blocks) 7(s;: {s;}) = ©(s,9)
@ Example 3: half-and-half rule (yellow blocks)

T (s) = 55 (009 + 3oy | + 15 005+ 8503

> s, = 41 (same as the original spin)
B
> §:= s, (sum of Boriginal spins in a block)
k=1
> O(z) is the Heaviside step function with ©(0) = 0.

30



new (reduced) Hamiltonian with block variables 7 := 3 Hgjng

e = Te T]T(s;: {si})e

Partition function and free energy density (' is also an integer)

Z'=Try e ') =Ty, e ) = 7,

1 1 1
f: TVIHZ: TVIHZ/: bdN’

InZ' = b2

where b?(= B) is the number of sites in a block and we neglect
—kg T for convenience.

semi-group property : If #’ and 22 have the same form,
repeating the block transformation gives 7 with the same
form as .27. Formally, we write 27’ = R, 7.

H" = RyH' = R3H

real space renormalization group (RSRG)

31
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the 1D Ising model : Transfer matrix

@ Partition function of the 1D Ising model (K := 8.J, h = S H)

7 — § . § eKS152+h31 6K5233+h52 . eKstl-&-h,sN
s1==% 81\/::‘:

@ 2 x 2 transfer matrix T

T — Kss'+h(s+s)/2 _y p_ Tiy T\ [efth K
88’ — —\7 T - -K _K—h
_+ —_—

@ €
@ Note that (cf: decimation)

Ksis2+h 2 Ks: h 2 2
g g Rl g )P — g Ts15, Tsys5 = (T )5153
So==% So=%

133



@ Partition function and the transfer matrix

Z=> (T"),, =TrT"
s1==+

@ Eigenvalue A of T

A2 — 2 efcoshh+ 2K — e 2K =0

= Ay =efcoshh+ \/eﬂ(cosh2 h— e2K 4 e—2K

=eX cosh h + \/eQKSinh2 h+ e 2K

o Z=XY+ AV
@ free energy density

. InZz . 1
—kBTA}gnoo N = —kpTln Ay — kBT]\}gnoo ]—Vln

()]

= —kgTIn (eKcoshh—l— vV e2K sinh? b+ e—QK)

34



Decimation for /= 0

@ Assume (A =1and N = N/2)

—# =NnA+ KZ sisj, —A' =NhA + K'Z ;85
(4.9) (4.9)

@ decimation

Tre— 7 — Z Z A2 K(s1+s3)s2 Z A2 K(satss)sa
So S4

51,83,85,... &

> {242 cosh [K(s1 + s3)]} {24% cosh [K(s3 + s5)]} - -

51,83,85,-..
1 1_
= Z 2Azcosh(2[()%+2j42 25183}_”
81,83,55,..-
- Z (AleK/H;l% + AleK/1_25153> =Ty ei%’
51,83,85,..-

35



@ Another approach

@ b\ A K K
“\e d) e K oK
_ 72 _ g2 2K 4 2K 2
== 2 2K 72K

@ ac= (A")? = 4A% cosh(2K) = bd.
@ a/b= K = cosh(2K) = d/¢,
@ RG transformation
K =Ry(K) = %ln cosh(2K), A’ = 2A42\/cosh(2K) = 242"

@ Free energy density (b=2,d=1)

InA+fK)=mnA+ %(1112—1—[(’)—1—%]0(](')

=llmaA

36



RG transformation

@ One more decimation
1 ! 1 " 1 1!
InA+ f(K) = 5 InA"+ 5(1n2+K )+ 5f(K )

@ What do we expect if we perform m decimations. (R}")
» [t is convenient to write tanh K’ = tanh? K.
» Fixed point K™ : tanh K* = tanh? K*
» tanh K* =0 (T = oo : stable) or 1 (7= 0 : unstable)
» Around K* =0, K’ ~ K’ (b= 2)
> K™ = R"(K) ~ K" : faster than exponential.

lim Ry(K) =0

m— oo

37



Generation of new terms : 2D case

@ Decimation in 2D

Tr, eKs(Sitsa 55+ ths — 9 cosh(K(s) + s + s + 54) + h)

H' = Zlncosh(K(s/l + 85 + 85+ 84) + 1)

KOS 5 D K S K+
3 i

ijk ijkl

where we neglect sindependent constant. Note that if 4 = 0,
only even terms appear.

38



@ From the beginning, we have to consider all terms that are
supposed to be generated by the RG process, which makes
finding an exact solution by RG infeasible.

@ Although 2D Ising model is solved exactly, no exact RSRG
transformation is available.

@ Even 1D model with nnn interaction is difficult to study the
RSRG because longer distance interaction is generated.

39



Project 1-2

@ Majority ruleO|L} Half-and-half rule2 0|25t 12t% Ising
model2| RSRGE EAMTIA| 2.,

@ symmetryS -‘?-AI%P block transformationS 5tH {2 A & =3|
=ML, O|E

T(s551,8) = 1;5 (1+511(1+S2)+1;5 (1_W4(1+S2)>

@ Project 1-129] 24|2| RG 2M 2 Aol EA|2.
° N2 A ge s

40



C}2 reduced HamitonianS SAM3HA|2. (N =2")

- = K, Z 8i8i+1 + Ko Z 5i8i+1

i=1,3,5,... i=2,4,6,8

= Ki18152 + K25283 + Ki5354 + K485 + - -+

Exact solutionS YA RS E7|E 2 E2IL|C}

4



RG analysis : general discussion

@ {K} = (h, Ki,...): a (ordered) set of all coupling constants
that can appear in the RG process. Some (in fact, most of)
coupling constants are zero in the original model.

@ 7' contains more nonzero coupling constants than 7.

@ All we have to doisto find {K'} = Ry,({K}) :

renormalization-group transformation (practically almost
impossible to find exactly).

42



@ If there is a non-trivial fixed point K*, h* such that
K, — K* = b9 (K; — K*) and hy — h* = b¥(hy — h*), then

fsing(eKa eh) = b_dfsing<byKeK7 bvr eh)7

where ex = K; — K* and ¢, := hy — h*. We assume all the other
exponent has negative exponent .

@ 1D Ising model is not a good example (e} = €%)

43



RG flow,
—

RG flow,

RG flow,
L

44



Callan-Symansik-like equation

@ fis a generalized homogeneous function
f(bYE e, b¥ep) = bif(ex, en)
@ cf. Euler homogeneous function
U(bS, bV, bN) = b* U(S, V, N)

@ If bis a continuous variable,

bibdf( €K, €n) = df(ex, en) =

0
db - +il/h87 f(eKy eh)7

yK@ In ex en

which is a Callan-Symansik(-like) equation or RG equation in
the field theory.

@ cf. U= TS— PV+ uNinthermodynamics

45
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n-vector model

@ (reduced) Hamiltonian of the n-vector model
1
—H = SRysi- s+ hi-si, K= K205+ 6jiji.1)

where s; is an n-dimensional vector with |s;|? =
» n=1:Ising, n=2:XY,n=3: Heisenberg, -
» Sjijja= 4, 77t nnO|% 1 OFL|TH 0= 2|0fStLt,
> p= K7} positive-definite 20| £| =2 sH= Q99| ZHo|C},
> |si® =1 (&)0122, po| Zt2 2o &S F2| Y=Lt

@ partition function

7 = Trexp <;’CZJSZ 55 + hl . Si) 5 Tr = H/ dn525(|sz‘ - 1)

i

47



a few Observables

@ Consider uniform h, thatis, h; = h = (h',..., h")

@ Magnetization m = (my, ..., my,)

1 1 OlnZ
Nmyg, = Z(s?} = ETY (Z sf) exp <21Cij5i -s;+ h; - si) = 8}%

7

@ Susceptibility x*?

. aB _ _ e el
ki TX WP~ NOWOR® N\ ZOWoh~ 72 OhP ohe

(509 (4)(5)

—O(N)

om™ 1 9%z 1 (1 027 1 07 8Z>

48



Hubbard-Stratonovich transformation

@ Gaussian d&

= [ Z (f:[l d@) exp [Z (—im(lc‘l)ij@ + smi)] ,

where K is a real symmetric positive-definite matrix.

® 2B AHZE ¢; = Ky(¢h; + s5) (note 211)

I = det Kexp (; Z silCZ-jsj) / (H di/h') exp <—; Z 1/%/C@j1/)j)
i ij

i

1
= \/(2m)N det K exp (2 Z silCijsj)
i

49



Hubbard-Stratonovich Transformation

exp (;Silcijsj‘> = C/[d¢] exp (—;@jij‘bj + Si(bi) :

N
J =K, [dg] := [ [ d¢s, C:=1/4/det K(2m)V
=1

Einstein convention (EH=L|+&= index0 Clist &)
discrete variable s — continuous variable ¢
s2to| HBARS ¢t 4BABOR Y,

sE ME SHHL2E Al 7ts.

50



@ Hubbard-Stratonovich transformation for the n-vector model
Z 1.,
Yol :’I‘r/[d(ﬁ]exp _§’Cij @i @i+ si (di+ hy)| <= @i+ hi— @,
1
~ v [[dslexp |36 ) (8~ i)+ 51 ¢
1 1
= /[d@ exp {2‘7@'(751' ~ P+ Tishs - dj — 5.7@'111' - h; + A(Qs)} ]

where A(¢) := In Trexp(s; - ¢;).
@ A(¢) is related to the modified Bessel function .
@ Forn=1,

A(p) = lnH ( Z es'i‘b") = Zln(2 cosh(¢;))

5/[::t1

2 4
zN1n2+Z(¢2i—f;)

51



@ For general n,

12 122
)~ NlnSp1 43 (|(§:»|L - 47§|2¢()n—22)> ’

where S,,_; is the area of (n — 1)-sphere.
(So = 2,51 = 2’/T, Sg = 471')
@ Partition function

~ 1
S 4= /[d¢] exp {—H(@ + Jijh - 5 — 5 Tijhi- hj]
where

H(gp) = %Jiqui -+ nln C— A(¢)

1 1 (¢ - ¢i)? /
~2<s7ij_n5ij>¢i'¢j+4712(n_|_2)+0

where C, ¢’ are constants.
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@ ddimensional hypercubic lattice with index i = x = (zy, ..., xq).
® 1<z <L N=L% HoY L2 et oAt

@ Dirac notation: orthonormal basis {|x)}.

@ operator K: (x|K|y) = Ky, = (y|K|x)

@ Translational invariance: Fourier mode

kxxy, k= "(ng,...,n9),mi= ——,...,—,

¢N§:€

K|k) =

p-l—ZCOS ] )| k),

=1

JNE:W'ﬂKB>*X—2K

=1/A0(K)>0

which gives J|k) = A¢(k)|k). Ji; ~ e~ (note).
@ p should be larger than d.

53



@ For later purpose, we calculate

> Kxy = (xIKly) = VNk = 0|K]y) = 2K(p + d),
which is independent of y. Accordingly, we also get

T ~ 2J(p+d)
ijy p—i—d) nTo’ To= nkg

@ For small k, Ag(k) = 7 + K /& with & = 4K(p + d)>.
@ determinant of K

1
Nlndeth In(2K) + — Zln

p+zcos ]

finite and independent of T

54



Observables in terms of continuous fields

@ We neglect constant.
@ “effective” Hamiltonian H = H, + V; with

~ 1 1 A
Ho =35 (sz - n5¢j> i @5, Vi= E((ﬁL - $i)?

@ partition function

~ 1
4= /[d¢] 9 {_HO = Vi+ Tyhi - ¢ — 5 Tijhi - by

55)



@ order parameter for uniform external field (h; = h, V)

1 10lnz 1
T2 A5 = T = 7 2 (T (#5) — Tah?)
3 ij

~ N ok

= 2005 Y (65) — A0}

where s¢ is the a-th component of s; and so on.

@ Susceptibility
1 9%lnZz
af _ B
e IX™ = N ohoons

= 2oOF 5 (1676) — 62)(0))) — 20(0)5es

N 7
i

56



@ Since Ay(0) = T/(nTy), divergence of x originates only from
fluctuations of ¢. Hence we will regard ¢ as a continuous spin
vector.

@ Since J;;h; - hj = Nh?Ay(0) for uniform h; and we are mostly
interested in the case with h = 0, we will drop this term from
now on. We rewrite the partition function as

Z= /[dﬁb] exp [*7'70 - Vl+hi'¢i:| .

® HOIM 2E field ¢, 7t 240| 22 OFF 242 442t

Landau free energy=

57



‘Steepest descent method’ and the mean field theory

@ saddle point analysis: to find the minimum of # — h; - ¢;.

A
oH Z (‘.72] ) P;+ g(@ - ¢:)° i = h.
J

o9
@ homogeneous solution for h = 0 (set ¢; = (¢0,0,...,0))
I Mg
(nTo n> do+ 3!

(/500( (T()—T')l/z7 T< T,
0, T> T,

@ Same order parameter exponent as the Landau theory.
@ But, critical point Ty depends on p? Something is wrong!

58



Failure of the ‘steepest descent’ method

@ Fully connected graphOf|A] £ Zdx{21 “2|£Z170| free energy 7}
SICk= ofo|cioj= S21 2 ofLiTt 2AlE RE B0l

2| XS AU W20l Ldstet

@ Partition functionS CIA| 2},
Z=Y PO =N"N"PE5[E— H(C)]
C C FE
_ Z 675E25[E7 H(O)] = Z e PIE-TS(E)] _ Z e BF(E)
E C E E

—Q(E)=e5(B)/kp

—kpTnZ Fui
¢ P x O(N) = lim —2——2 = lim - = A1)

N—oo N N—oco

59



=, (A2) B2l 771 NO|H B4 Ji0] 2at, = HEZT|S
B Al 12245HOF SHCY,

Q9| ‘saddple point’ &4l =, Landau theory= entropyS
FAIRYMY| W20 2 B F

° O| SAS fluctuation’'S ‘:'AléH)H HFAISE 22|21 O|OF7| ST},
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momentum space representation of #,

@ Fourier transform
bx = NZ@”‘"% sok—ze "= Ty

@ Although Ry, Sy are actually independent (integral)
variables, we can formally treat ¢y and ¢_j as independent.

@ H, in the momentum space (h =1)

% Z Jx,yd)x ' d)y = % Z PPk ;2 Z eikx—&-k"ij’y

k,k’ Xy

Z‘Pk@%’ (—K|J|k) = QNZ\SOI(\ Ao(k)

kk/
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(naive) continuum limit of

— oo (thermodynamic limit) : kis ‘almost’ continuous.
7t HEIHsT B

°
° ot &4~ (Lesbegue measurable function)z2}

ngrg =

Fok
Fol
|

Pk
il

~ 1 5 2 [T dk o
2= 3y (B = | Grateled

_ [t s Boaor) A ik )
_[A (27r)d a’O ‘a()soaonl —/ (QW)dA(k”(p(k)‘

. lattice constant, A = 7/ qp : cutoff, rename: k = k/ap — k

@ q

Ag(apk
Al = 2008 1 = gy

L[ank
0
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@ continuum fields in real space

1 ik-x T ddk ik-x
b=y e o~ [ et

A d A d
g [T YK ks, f1+d/2/ Ak s
e /;A (Zw)de Paok g A (27T)de (10( )

o Defining ¢(x) = ay~ “* /0, (x = x/a0), We get

A d o
$(x) = /_ A%ffﬂ”‘ﬂ(k)» p(k) = /_ . d*ze=**p(x)

o o(k) Q| A [p(k)] = [atT Y2 = [A1792) = -1 — g
o ¢(x)2 A [p(x)] = [a) VY = ATV = —1 4 g



where we have assumed ¢(x) — 0 as |x| — oo and

n

VP =3 (Vo).

{=1

0|28 2% OS2 MZt5HR| 211 discrete differenceS
gAHo = 2 7|22t MZisk= A0l § Hetsit

64



Field theory

@ effective Hamiltonian space-continuous fields

H=Hc+ Vi
1 A
o=3 [ ax[a? VoI + ile@P] . vi= 5 [ axe@I),
@ P x T— Ty p? 2 &, 5 2F & £+ UA|TH LAY EL| mass
of siEgdte 22 (E? = p* + m?) 0|2t Hl&S Z&tst 41 ot
@ )\ =0Ql ASE Gaussian theory2tdd 22Ct (subscript G)

o IS0l 2HAIT, ¢°,¢%, .- & DHASO| IS
(22, 0|d =0 EOME“ critical point= &epRICt)

o effective Hamiltonian % £ Ginzburg-Landau-Wilson free energy
functionalO|2t 1= E2C},

Foﬂ
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Generating functional Z[ J|

@ partition function
ZlJ) = /D(bexp {—’H + /J(x) . ¢(x)dd:ﬂ] ,
' 1 1 A
= [ a2t 9o + Lol + 200

@ J (source2t1 &= B 2C}) = external magnetic field2t= 224 Q!
O|0[&= AR|TH, ALHS EO|5H St=E == 7| = Stot.

@ 7|J|Z generating functionalO|2t1 &= 2}

® Dy NnJl MAHE £ N 0o 2|8 H0|2Hs 7|52 24F5te
Z40| OZ0| T™StTt, (OFL|H 2 HO|E measure?t T R)

® a, yi, \E bare parameterz} £2C}
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Discussion about cutoff

@ 1H|3H=2 large scale (or small momentum) physicsO|22, A7}
Fes FA= 0|20 st
o A,

= VA2t 51, Y2 HE7rS HiR|20| 22E A, VdA
, 3ok 22|9] 0| 20| A-independentdtCH,

hypercube0f| A9 Z20|Lt HOA Q| Z20[Lt 22 HUE &

Z10|Ct. W}2tA, O|S0f|= kO] HEZH2 HIZ|Z A QI 4 2} 22

H A SHO] 7|4kt Zi0|Ct,

@ ZBZHCZ A 5007 F%

2™ “continuum theory

o| E
T Abo|oj] Q=g Brot 2

— T

Zo|Cct. O] 230 UO| &= A2

=
"7} 1St O|OF7| ST (RG).

St

=
=
—_

67



219l &M (Dimensional analysis): canonical (engineering) di-
mension

d
2
@ source J(z)2| 2} 0= —d+ [¢] + [J(z)] = [J(z)] =1 +g
@ A X241 0= —d+ [\ +4¢] > [N =4—d
@ momentum space field ¢ (k) 2| 2t
[p(k)] = [/ d%ei"%(x)] =—d-1+ g = —g -1

)\srf dlg(V)s¢r | 0| QY= AL, Msr] =d+r— %rdf 2s
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Critical behavior and critical exponents

@ critical exponents 3, v (h = 0)
m”ch—TIB X"‘ch_Tl_Y
my X

Te T T T

@ Behavior of correlation functions G.(r)
> At the critical point, G.(r) ~ r~(4=2%™ (scale invariance)
» 7 is called the anomalous dimension.
» For T# T., Ge(r) ~ exp(—r/&) with & ~ | T — T.|7".
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Critical behavior and critical exponents (cont.)

@ exponent a (diverging energy fluctuation)
~|T— T,
@ exponent § (at the critical point)

m ~ |h|°sign(h)

comparison of exponents
o B 07 0 n v
mean field 0 i 1 3 0 i
2D Ising O(log) | 3 : 5 i 1

@ mean field7} €2l 0|2+=7? RG will explain.

70



M1} critical exponents

@ mean magnetization (¢)
> ()2 uAt A2l Bt
> $O| S —1+ d/20|22, (¢) x 1/VA.
> VAp2| 2122 10|22 19 H|2|
> 4> =T— To0|22 (¢) x /|T— To| = =1
@ correlation length &
> o 22 ~10|22 0| 21U S PHE & YEs RE2 1.
>l |T—To| 2 sv=3
@ equation of state at the critical point
> J= A2t 42| Bt
> [J/¢] = 2012 7] =
> MatA 7Hs8 2B Jox ¢ — 6 =3

—

7



dep
@ susceptibility y oc 2

> X2 A2 [¢] - [ = -2.

> U AZ Y 2B UE LU R o x x |[T— To| 'y =
@ correlation function G.(z) = (¢(z)¢(0)) at the critical point

> Goe 1z, ), {¢) 2 &4 ({(¢) = 0 at the critical point).

> A= (¢) 2t =2 FEHZD SHSIEZ Go= 22|

> [Go]=d—20|82 Gox 1/r? - n=0

> £ 02 {EH 755712 (B2 effective Hamiltonian2 critical

behaviorE AHCHZ A 4 QiLI?)
@ mean field theory= Ch 2126|102} consistentSICh.

_|_

@ specific heat ¢, = 2AFAZAMUH2 2= & 4= QIC} (discontinuity).
@ 20| 5%, ¢,= H 2| fluctuationO| 2 [H] = 00|22, a = 0.
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o|zofl=

@ n =19 A0t =0|5tCt (Ising model)

@ momentum space @t 112{3}AIC}.

1 99 2 /1 |<Pk\2
= /| = k ko =: | =
Ha /ﬂ(a + 1) o—kprk EVNGE
A
Vi= ] 0192030206 (1 +2 + 3 + 4)
" J1,2,34

@ notation

/ o / d'x, )= / *TP(x),  B(@) = ¢(X), @i = pr,

A d
/::/ ddkd, S(1424---)=2m)%(ky +h2+--)
k (2m)
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Gaussian theory with source J

@ Gaussian theory

1 2
ZglJ] = /D¢€Xp <_HG+/kJ—k‘Pk) y Hog = /k2A<P(1;€|)2

@ Gaussian theoryO| A= 2 > 00|0{OF2F &
@ Average

<0M@:=E§EL/D¢OWFMN—HG)

@ In particular,

o o
ii 7
5J_k1 5J_km G[ﬂ J=0

o 9 AL WS Aol F20|E MY,
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[ ]
ﬂ
rﬂ

HE o= o+ JAR)

e (#5088 e fora]

— Zo{0] exp B 12A(kl)J_1J_26( )]

@ Correlation function

(27)2452

(oroa) = g7z eww |5 [ Al ad(1-+2)| = Awsa2)

BS (prp-x) = A(k) 2t 2Lt
@ Fourier transform of A (note zr11)

A ez’k(m—y) e—lt|X_J’|/Ul
(z,y) _/koﬂk? T2 ~ x — y|(&-D/2

@ Gaussian theory= &27t0]| discretest 20| = £2H0| A EZICY
(continuum limit7} & A9l =ICt)
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@ Perturbative expansion (Jo= X&28 7ttH5HA|

—

r¥

A

A DO

= /D¢€*HG*VI(W)+<]@ _ \/D(bef\/](gp)ef?-[(ﬁgﬁp
1 m ,—He+Jp
/wZ (= vimete

/ng Vl)m —He+Jp

H'Q

m=

- mz:o ml / D¢ ( VJ[M]) o~ Hot o

- exs[-11(2)] 29

@ DO ZA|E T|5H7| 2I5t0] 2| A2 field theory2| F2ol2t1
HR517| = Fiot
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Does the series converge?

o for example, zero dimensional case

[e.9]

o d'I: 2 4 2
Z(A\ E/ —F /2=Az /4i -\ an
( ) —0o0 \/27T 7’2::0( )
Zn _ i d]‘ e_:t2/2([j4n _ (477)' N 1 4J n
4 2 nl16™(2n)!  /nm \ e

£HBEAEZ 0. The series for nonzero A diverges!?
The divergent series are the invention of the devil, and it is
a shame to base on them any demonstration whatsoever.
By using them, one may draw any conclusion he pleases
and that is why these series have produced so many fal-
lacies and so many paradoxes. Niels Henrik Abel

1

@ Doyouknowl+2+34...= ——2
y R 12 78



@ Taylor Z7jjo] M2

‘f(l’) -> fTi ),
n=0

= ‘/I (‘Tt)Mf(M“)(t)dt‘ < Ky

Ky = sup
o<tz

4 9.
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perturbation 0|22 E&

@ c*<10|B8,
R dr e /2 M
<
M= Ver (M+1) (4)

= ) +1ZM+1N< )

@ MM~ 1Y W Ry ~ e /4N (minimum).

@ MO| Ad F2| fo™H MACEH (asymptotic series?t convergent
series2Ct B2 75'$ o L2o2 O 22 ANZ ZC})

@ Stirling’s formula, steepest descent method,
Rayleigh-Schrodinger M52 5§ S2[0| LiE29| ZAt=

=

convergent series”f OtL| 11 asymptotic seriesE CH2C},
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o /’""’a"a*a/a/a/a

o B — 3
| o 00 )
12 | ©°006560000°°
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Momentum Shell RG: idea

@ integration over ¢, in @ momentum shell (cf: decimation)

@ rescale and compare to the original theory
Step 2

<N

Step 1
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decimation (shell integration)

@ Partition function

< >
Z = /Dgpeiﬂ :/ Dy {/ D(peﬂ}
< _ >
:/ Dype M [/ D(peHEVI}

decimation

> [~ :integral over the field in the shell
> 7 :terms with large momentum (k > A/b)
> ¢ terms with small momentum (k < A/b)
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Perturbative Expansion

@ Shell integration
> >
1 [~ > - >
where (O) = ?/ DpOe Me, 7, z/ Dype e
0
7 <
7:/ Dyexp (—Hg +In(e” V7))
0 .

~ [ Do |15 - (Vi) + 5 (V) = (Vi) -

@ cf: cumulant expansion

@ All terms like ¢°, #® will appear.
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calculation of (V)

@ O|A|2E a =1, \/4! = uetd StA},
1 2 2 2
Ho= | (K +p7)lewl,
k
V[: u/ 99191501@290]@3901646(1+2+3+4)
J1234
® vr =97 +pr et AW (o7 = pO(k— A/b))
Yy / H<p,j§ (1+2+3+4)

>
+6/ softprf/ (03907 )6(1+2+3+4)+2A(b,A)
12 34

7=[" lenl? [ (lenl?)
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calculation of (1;) (cont.)

® BT ASI| (b= ~ 1465 <1)

> A d—1 S 1 d—1
/ <<p;|2> = Sd_ld/ 2p 5P = d_ldAd%/ 2 . 5712 4%
p (2m)% Jasp P* + 10 (2m) 176 @+ p2/A
281 yia 0 _ 4o O

(2m)d 1+r — 1+7r

where r = p?/A?, Sy is the surface area of (d — 1) shpere.
e He|stH

1 12006 <
H§+<Vl>:§/k (k2+A2 +A211 )|<pk|2+u/ ot + U

@ 2A+= free energydf| = FX|0t order parameterdjl= IS
= 7| or=r}
T LS — o
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calculation of (¥

@ second cumulant (V2) — (V)2
@ Diagramatic representation

> V2 171 B2t 4749 MEO| U diagram 22 EHFICH

» = momentumOi| SHYEH= ME7|2| HASIE, & BRIA
diagram 2t Z12IC},
> ZR9| 5 & Attt

> AZHE M20f A(k)E 201511, loopO| A47|B [~ & B,

rlo

2L

rir
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calculation of (1) : Feynman diagram (cont.)

1 zZ1 T2
o U= T I 1o FHS 220
order)

o U 22X0| Rl= diagramO| w0f &= FL.

higher orderO|Ct, (two-loop

’
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Step 2: rescale

@ shell integration2| Z}

<
Zoc/ DpeHo=Vi—,

. 12uC'6 o 3612 C
1+r " (1+ )2

'7::

@ rescale
> k= rk/bet 2|StotH HELZI0] ATMR| 2 CHA| SOFZHCE

> o = bUFY20, 23510 22l HEf2 SOfziTt,

|_

< 2 2 2 2
/ ¥|oxl :/n 6]
k K
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Step 2: rescale (cont.)

> O] AR Fas 20207, b* It FEHRIC ([ =2, [u =4 - d)
> O|A #o| HEl= FAI=|1 v, wt2|0f o/, w' 22 ¢ B Of QUCH,

o = i (14 26) (w 120“5> i {2r+ 12011 |
LAk e 1+r

36 Cu? 36U
/: EU = 1 — 5 = -
u =b"u=(1+¢ed) (u (1+7_)26> u—&—u{a (1+7_)2] :

where U= Cuande =4 — d.
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RG flow equation

@ RG flow equation and fixed points

dr 12U au 36 U?
—=2r+——=0, —=elU-—=0
T e (1+1n)?
@ There are two fixed points. (r*, U*) = (0,0) and (—¢/6,¢/36),
where we assume ¢ < 1.

@ (linear) stability analysis around the fixed points

ar 120° . 5 a0
5y = (1+20) = s b :
ar' ou ,

S5 =120m0, == = O(U),

U

— =1 —T2U*S ~ bETTRUT,
Blii +ed —T72U0%6
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RG flow equation (cont.)

@ bare parameter?} ry, uo O|ACHH,

r(b) —r" = 62_12[]*(7’0 —7), u(b) —u" = 65_72U*(u0 —u")

» For (0,0) (Gaussian fixed point)
() — r* =0 (ro — ),  u(b) — u* = b (uo — u*)
» For nontrivial fixed point,

T(b) = b275/3(7,0 _ 7'*), U(b) —aF = biE(U() - ’U,*)
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™ is always unstable (ZA}d S, &AM AEH)
U* = 0 is stable (unstable) if d > 4 (d < 4)
U* = ¢/36 is stable (unstable) if d < 4 (d > 4)

For d > 4, U* = 0 is the stable fixed point and the theory is
identical to the Gaussian theory (or mean field theory).

@ For d < 4, we have nontrivial fixed point and, accordingly,
non-mean-field critical behavior.
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Momentum shell integration is not elegant

momentum @l ZL0| 52 6(1+2+3) o A&

0122 2322
TZt2 FAUTL?

@ KPZ equationS momentum-shell RGE £M5tH C+22| Al0|
LH2C

k

[::/ P P sy g o) AR
12 p1(p1 +p2)

ket 5t =, kO Ci5t0] Taylor

—

= ot

©EBEp=p-—zhp=-p—3
W3O} [pl > A/bOH| EHSHO] 2z
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o d439o a7t 22

RIG|, 40F py = p— ak, p, = —p— (1 - a)kt S

I— _/> (p-k— ak)(p* + (1 - 20)p - k— o(1 — a)?)
P (p— ak)*[(p — ak)® + (p+ (1 — a)k)?]

(/e )

]

=
@ o= 1 & MEHSIH Qb= &8 ECt O30 of?

e AlA2 28X O S45HRICEH momentum
shell integration2 2fsHiOf 22t 4 S| B 7hs 5Tt AFZE0|
O[OF7| St

-
J

Field theoretical renormalization group2 Of Z0f| ZE317t0]|
cutoff7F QI0{A O BA|7t Y5t2| ¢t=Ct. (22 infinityZ
{2|s{OFot= A7 EStCt)

=2 o
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Epilogue : Fokker-Planck
equation




Imaginary time Schrodinger equation

@ Imaginary time Schrodinger equation (h = 1)

ov N it/ B ov NS
— =H = H|
th—r = Hb, ¥ —— ~ 98 (b, @)
@ Fokker-Planck equation
0P(q,t) 0 1 02 s s
5y _8q [a(9)P] + 5 Z [b(q)P) = —H(p, @) P
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@ formal solution

(g, 1) = e~ (g,0) = U(1,0)%(g,0).

> In statmech, H is a Hermitian.
> In stochastic processes, A needs not be a Hermitian.

@ Propagator and partition function
(dle"™q), Z:TrefﬁH:/deq\e’ﬁH@

@ Group property of the time evolution operator U

U(t,0) = Ultn, tae1) Ultn_1, tn—z) - - - Ut1, to),

where tp = 0 and t; = # + ne withe = t/n.
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Path Integral for the FP equation

@ Assume ¢ < 1 (n — o)

(g Ulti, timr)|d) ~ 6(q— d) — e(ql H{)

L / dpela=1) _ / dp{alp) (sl 1)
= o [avespinta=d) g [[ape (St + i)} ol

— % / dpexp [ip(q— qd)—¢ (p;b(q’) 4 z’pa(q’))]
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Full propagtor for finite ¢

<qn| U(ta 0)|Q0> = <Qn| U(tna tnfl U(tnflv tn72) e U(tlv t0)|(]0>

- / A1~ A1 (gn] Ultm, trerl Gmt Hnon |+ - |2 | Ut to) o)

. 1
_nlgfoloW/dpn"'dpld%—l'“dﬁx

X exp [zﬂ: {Z'Pj(qj —g-1) —€ (ZJ b(gj—1) + ipﬂ(%‘l)) }]

J=1

naive continuum limit and path integral

Z {Z@qujsqj_l —€ (Z;jb(%'—ﬂ + ipja(qg‘—1)> }
J=1 ]
o / ip(t)at) — H(p(t), o(t))dt

0
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@ path probability (density)

Pla(r)) = [1Dp]exp { / M) = e )

@ path probability ratio(?)

101



	LANDAU THEORY
	Seemingly Realistic Toy Model
	Ising model and Landau theory

	REAL SPACE RENORMALIZATION GROUP
	Block Spin
	How the RSRG works

	MOMENTUM SPACE RENORMALIZATION GROUP
	Uncontrained Continuous Fields Description
	Gaussian Theory and Perturbation
	Momentum Shell Renormalization Group

	Epilogue : Fokker-Planck equation

