Towards a Better Understanding of Environmental Effects in Groups and Clusters using Phase-space

Jelly Fish Locations in Projected Phase-Space

Tidal Mass loss of stars (pink) from galaxy in harassment simulation (bubbles are cluster & clustermembers

(From Smith et al. 2015)

Rory Smith 8^t

8th KIAS Workshop on Cosmology and Structure Formation, 2018

Simulation details: YZICS

Hoseung Choi, Yonsei University PhD supervisor: Sukyoung Yi

Zoomed cosmological simulations of groups and cluster

- 15 systems in total (Mass range 5e13-1e15 M_{sol})
- Simulation resolution:
 - → Spatial: 760 pc
 - \rightarrow Min halo mass: ~1e9 M_{sol}
- Good time resolution (70 Myr)
- Baryonic physics: Hydrodynamical gas, star formation, stellar feedback, BH formation, AGN feedback, etc

Galaxy properties function of mass and environment

To see effects of environment, need to first control for galaxy mass

Galaxy properties function of mass and environment

To see effects of environment, need to first control for galaxy mass

... but environmental effects don't act instantly → **Infall time** is another key parameter.

Phase-space: What is a phase-space diagram?

Phase-space diagrams to determine infall times

Separate quite neatly....but these are 3D phase-space diagrams!

from Rhee, Smith et al. 2017

Projection effects

3D phase space diagram \rightarrow 2D 'projected' phase space diagram

Probability of finding a particular infall time

Gives a statistical result – so works best with many galaxies..... and even better with many clusters

(Right column) **Standard deviation** (arising from clustercluster variations, line-of-sight, etc)

Rhee, Smith et al. 2017

Tidal Mass loss in Phase-Space

Clear correlation between infall time and DM mass loss within the cluster

Infall time and Tidal Mass Loss linked in Projected Phase-Space:

Satellite Population by Phase-Space Region

Breakdown of galaxy properties (infall time & halo mass-loss) in different regions in phase-space from Rhee, Smith et al. 2017

Ram Pressure Stripping

Virgo cluster in X-rays, ROSAT

Ram pressure simulation, Quilis 2000

The motion of a galaxy through the intra-cluster medium causes a drag force on it's HI gas disk

Ram pressure stripped galaxies in phase-space Semi-analytical approach

3.0

(%)

Probability of being stripped

Ram Pressure Stripping in Phase-Space The Abell 963 Cluster

Jaffe, Smith et al. 2015

Application to the Virgo Cluster:

- Collaboration with: Aeree Chung (left) & Hyein Yoon (right)
- VIVA survey: Deep VLA imaging of the HI gas disks of Virgo cluster spirals
- Galaxies categorised by Hyein based on HI morphology:
 (i) before ram pressure
 (ii) active ram pressure
 (iii) past ram pressure

'Before Ram pressure' Sample Extended gas rich disks in Phase-space

Yoon, Chung, Smith et al. 2017

'After Ram Pressure' in Phase-space: Heavily Truncated Gas Disks

Yoon, Chung, Smith et al. 2017

2D distribution of Jelly's differs from that of rest of galaxies -

Jaffe et al. 2018

Mean properties in Phase-space zones from simulations:

For application to large samples of clusters and groups

Anna Pasquali, Heidelberg

Mean infall time in phase-space: Time since infall vs zone: 3 2.5 Shading indicates guartiles Mean Tinf (Gyr) Lookback Infall Tme (Gyr) 2 0/1.5 <u>0</u>|1.5 0.5 n 0 0.2 0.4 0.6 0.8 0 0 2 3 6 7 8 R_{proj}/R_{vir} Zone

Pasquali, Smith et al. 2018 (submitted)

Mean properties in Phase-space zones from simulations:

For application to large samples of clusters and groups

Anna Pasquali, Heidelberg

Mean infall time in phase-space:

Time since infall vs zone:

Pasquali, Smith et al. 2018 (submitted)

SDSS Galaxy properties across Phase-Space:

Applied to Wang et al. 2014 group catalogue:

- Host masses from giant galaxies to massive clusters: log(Mhost)=12 -15
- Satellites from dwarfs to giant galaxies: log(M*)=9-12.5

Galaxy properties from Gallazzi 2018 catologue:

- PDFs derived from SDSS DR7 spectra
- Luminosity weighted age, Age,
- Specific star formation rate, sSFR
- Stellar metallicity, Z/Zsol
- Alpha abundances, α /Fe

Mean properties in Phase-space zones:

Anna Pasquali, Heidelberg

Luminosity weighted age:

Pasquali, Smith et al. 2018 (submitted)

Mean properties in Phase-space zones:

Specific Star Formation Rate (sSFR):

Anna Pasquali, Heidelberg

Pasquali, Smith et al. 2018 (submitted)

Metallicities by infall time:

Pasquali, Smith et al. 2018 (submitted)

- Constrain star formation history and stellar mass growth evolution
- Details in: Pacifici et al. 2016

• Mass growth history parameterised: \rightarrow t10, t50, t90 (lookback times when 10, 50 and 90% of final stellar mass was assembled)

Camilla Pacifici NASA Goddard

Stellar Mass growth History

Summary

- Location in phase-space provides information on infalltime, tidal mass loss & ram pressure stripping
- Best results are statistical: many clusters, many galaxies, many lines-of-sight
- First results from phase-space very promising
 - → results make sense

 \rightarrow clear changes in galaxy properties when varying infall time distribution (at fixed mass and environment)

• Extend approach to:

→ Other galaxy properties (shapes, morphology, colour & density profile, LSB features, SFHs
 → Other samples: (higher redshift, groups, deep and/or high resolution imaging, IFU surveys (e.g. GASP, SAMI), etc