High-redshift Quasar Survey with IMS

Yongjung Kim1,2, Myungshin Im1,2, Yiseul Jeon3, Minjin Kim4, and IMS Team1

1Center for the Exploration of the Origin of the Universe (CEOU)
2Astronomy Program, FPRD, Department of Physics & Astronomy, Seoul National University
3FEROKA Inc.
4Department of Astronomy and Atmospheric Sciences, College of Natura Sciences, Kyungpook National University
High-redshift Quasars

- **Cosmic Reionization**
 - Which objects can fully ionize the neutral hydrogens?

- **X-ray AGN candidates**
 - Cosmic Dark Ages
 - $z > 15-30$?
 - $t < 100-270$ Myr

- **Optical/NIR quasars**
 - Rare sources form ionized bubbles
 - First stars ($z = 15-30$?)
 - First galaxies ($z = 10-30$?)

- **IGM mostly ionized**
 - $z = 0-6$, $t > 1$ Gyr

- **Present day**
 - $z = 0$

- **Reionization**
 - $z = 6-15$?
 - $t < 1$ Gyr

- **Robertson et al. (2010)**

- **Lack of Quasars**
 - $-25 < M_{1450} < -22$

- **Giallongo et al. (2015)**

- **UV emissivity:** $\epsilon \propto \phi \times L$
 - ϕ: QLF
 - L: Luminosity

- **Maximum at $M_{1450} \sim -23.5$ mag**
High-redshift Quasar Survey with IMS

- **Infrared Medium-deep Survey (IMS; M. Im et al, in prep)**
 - Near-infrared imaging survey using WFCAM on UKIRT
 - 120 deg², 5σ depth of $J_{AB} \sim 23$ mag
 - Overlapped with optical data from CFHT Legacy Survey (CFHTLS)

- **Three Steps for Finding Quasars at $z \sim 5$ & 6**
 - Broad-band color selections based on their distinct spectral properties
 - Medium-band observations using SQUEAN on Otto Struve 2.1m Telescope
 - Spectroscopically identification with large telescopes

![Gemini 8m](image1)

![Magellan 6.5m](image2)
Discoveries & Implication to Reionization

- Discoveries of High-redshift Quasars

- Minor Contribution to Cosmic Reionization

At $z \approx 6$, **Less than 15%** of required UV photons from faint quasars ($-25 < M_{1450} < -22$)

QLFs at $z \approx 5$ & 6 Coming Soon!