KIAS Center for AI and Natural Sciences 2024 Fall Workshop

 

KIAS Center for AI and Natural Sciences Fall Workshop

 

 

November 4 - 8, 2024      Nest Hotel, Incheon

Program Home > Program

Download Abstracts

 

Day 1 – Nov. 5 (Tue)

 

8:55 - 9:00

Opening Remarks

 

9:00 – 10:00

Tutorial- Krikamol Muandet

Causal Machine Learning

10:00 - 10:15

Break

 

10:15 - 10:55

Daniel D. Lee

Fluid Dynamic Models in Machine Learning

10:55 - 11:15

Thomas Dieter Flacke

Color singlet, sextet or octet?
Identifying and distinguishing new physics signals at colliders with machine learning

11:15 - 11:30

Break

 

11:30 - 12:10

Jonggeol Na

Autonomous design of products and processes: Generative Chemical Transformer to reinforcement learning-guided combinatorial chemistry

12:10 - 14:00

Lunch

 

14:00 - 14:20

Jakwang Kim

Adversarial robustness in classification via the lens of optimal transport

14:20 - 14:40

Jaewoong Choi

Improving Neural Optimal Transport via Displacement Interpolation

14:40 - 15:00

Break

 

15:00 - 15:40

Krikamol Muandet

On Imprecise Generalisation: From Invariance to Heterogeneity

15:40 - 18:00

Poster session

 

18:00 – 20:00

Dinner

 

 

 

Day 2 – Nov. 6 (Wed)

 

9:00 – 10:00

Tutorial- Yung-Kyun Noh

Advances in Plug-in and Non-Plug-in Nearest Neighbor Methods for Utilizing Density Functionals

10:00 - 10:15

Break

 

10:15 - 10:55

Hsuan-Tien Lin

Building Operational AI Weather Service in Taiwan

 

10:55 - 11:15

 

Ji Woong Yu

 

Recent Application of Machine Learning Force Field:

Beyond Simple Molecular Dynamics Simulation

11:15 - 11:30

Break

 

11:30 - 12:10

Chieh-Hsin Lai

Enhancing Accuracy and Efficiency in Diffusion Models

12:10 - 14:00

Lunch

 

14:00 - 14:20

Yeachan Park

Understanding and acceleration of grokking phenomena in learning arithmetic operations via Kolmogorov-Arnold representation

 

14:20 - 15:00

 

Jaeyong Lee

 

Real-Time Solutions to PDEs with Neural Operators in Scientific Machine Learning

15:00 - 15:20

Break

 

15:20 - 15:40

Jun Sur Park

WGFINNs: Weak-form Generic formalism informed neural networks

15:40 - 16:00

Changhoon Song

How does PDE order affect the convergence of PINNs?

16:00 - 16:20

Kwang Hyun Cho

Automized dataset collection for PES interpolation for pigment-protein complexes

16:20 - 16:40

Break

 

16:40 - 17:20

Yung-Kyun Noh

Nonparametric f-Divergence Estimation and its Application to Eliminating Harmful Variables

17:20 - 18:00

 

 

18:00 – 20:00

Banquet

 

 

 

Day 3 – Nov. 7 (Thur)

 

9:00 – 10:00

Tutorial- Masashi Sugiyama

Machine Learning from Weak Supervision:

An Empirical Risk Minimization Approach

10:00 - 10:15

Break

 

10:15 - 10:55

Guido Montúfar

Implicit Bias of Mirror Descent for Shallow Neural Networks in Univariate Regression

 

10:55 - 11:15

 

Daeseong Yong

 

Dynamic Programming for Chain Propagator Computations in Polymer Field Theory Simulations

11:15 - 11:30

Break

 

11:30 - 12:10

Masashi Sugiyama

Machine Learning under Distribution Shifts

12:10 - 14:00

Lunch

 

14:40 - 18:00

Excursion

 

18:00 – 20:00

Dinner

 

 

 

Day 4 – Nov. 8 (Fri)

 

9:00 – 9:40

Chulhee Yun

Provable Benefit of Cutout and CutMix for Feature Learning

9:40 - 10:20

Seungchan Ko

Finite Element Operator Network: Theory and Computation

10:20 - 10:35

Break

 

10:35 - 11:15

Kyungwoo Song

Robust Machine Learning via Sufficient Invariant and Causal-Aware In-Context Learning

11:15 - 11:35

Sangwoong Yoon

Value Gradient Sampling

11:35 - 11:55

Break

 

11:55 - 12:35

Dohyun Kwon

A Fully First-Order Method for Stochastic Bilevel Optimization

12:35 - 14:00

Lunch

 

14:00 -

Closing